1 resultado para Breakdowns Forecast
em University of Connecticut - USA
Filtro por publicador
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Archive of European Integration (24)
- Aston University Research Archive (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (13)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (4)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (325)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (46)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (4)
- Digital Peer Publishing (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (93)
- Earth Simulator Research Results Repository (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Georgian Library Association, Georgia (2)
- Institute of Public Health in Ireland, Ireland (17)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (48)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (34)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (4)
- Ministerio de Cultura, Spain (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (5)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (24)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (19)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (3)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (26)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (4)
- Scielo Saúde Pública - SP (17)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (24)
- South Carolina State Documents Depository (1)
- Universidad del Rosario, Colombia (20)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (10)
- Universidade dos Açores - Portugal (2)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (32)
- Université de Montréal, Canada (13)
- University of Connecticut - USA (1)
- University of Michigan (26)
- University of Queensland eSpace - Australia (13)
- University of Southampton, United Kingdom (1)
Resumo:
This paper uses Bayesian vector autoregressive models to examine the usefulness of leading indicators in predicting US home sales. The benchmark Bayesian model includes home sales, the price of homes, the mortgage rate, real personal disposable income, and the unemployment rate. We evaluate the forecasting performance of six alternative leading indicators by adding each, in turn, to the benchmark model. Out-of-sample forecast performance over three periods shows that the model that includes building permits authorized consistently produces the most accurate forecasts. Thus, the intention to build in the future provides good information with which to predict home sales. Another finding suggests that leading indicators with longer leads outperform the short-leading indicators.