3 resultados para Braley, Seth
em University of Connecticut - USA
Resumo:
The skinned portions of baseball and softball infields vary widely with respect to soil texture, applied amendments and conditioners, and water management. No studies have been reported that quantify the effects of these varying construction and maintenance practices on the playability of the skinned portions of infields. In Connecticut, USA, skinned infield plots were constructed from five different soils (silt loam, loam, coarse sandy loam, loamy sand, loamy coarse sand) and amended with four rates of calcined clay (0, 4.9, 9.8, 19.6 kg m–2) to determine the effects on surface hardness, traction, and ball-to-surface friction (static and dynamic) at varying soil moisture contents (10, 14, and 18%). Bulk density, saturated hydraulic conductivity, and shear strength of the different soil–calcined clay rate combinations were determined. Increasing the rate of calcined clay decreased bulk density and shear strengths, and increased saturated hydraulic conductivity. Surface hardness increased more with coarse-textured soils and increasing calcined clay rate, but decreased more with fine-textured soils and increasing soil moisture. Increasing the calcined clay rate resulted in decreases in ball-to-surface static friction across all soils and decreased dynamic friction with the fine-textured soils. Increases in soil moisture increased friction in all soils. The fine-textured soils had greater traction than the sandy soils, but no consistent calcined clay or moisture effects on traction were observed. Shear strength of the soils was highly correlated with traction and friction. The results suggest that differences in skinned infield soils are quantifiable, which could lead to the development of playing surface standards.
Resumo:
Obesity and other related metabolic disorders are a common problem in the United States. Consequently, several drug therapies have been developed in an attempt to address this problem. Many older appetite suppressants, such as amphetamines, were dangerous and potentially addictive. For the last few years, the endocannabinoid system was investigated as a potential target for appetite suppression. Unfortunately, early cannabinoid CB1 antagonists came with an unacceptable side effect profile of their own, which is largely due to central actions of these drugs. In an attempt to reduce the side effect profile, researchers are investigating peripherally acting cannabinoid antagonists, which do not penetrate the blood brain barrier. This study investigated AM 6545, a novel peripheral cannabinoid antagonist, for its effects on food reinforced instrumental behavior. In the end, the results indicated that AM6545 produced a dose-related suppression of lever pressing for food reinforcement.
Resumo:
Over the past decade the topic of genetic engineering has been has been readily debated in the media, but often these debates consist of political rhetoric and fail to offer objective information on the methods and the potential benefits to human health and their environment. In truth, humans have been manipulating the genomes of organisms for thousands of years, and it has been an evolution of scientific knowledge that has led to the more precise methods of genetic engineering. This paper discusses how scientists utilize natural processes to alter the genetic constituents of both prokaryotic and eukaryotic organisms, benefits to human health and the environment, as well as potential misuses of biotechnology such as bioterrorism.