4 resultados para Antigens, CD45 -- drug effects
em University of Connecticut - USA
Resumo:
BACKGROUND: Microsomal transfer protein inhibitors (MTPi) have the potential to be used as a drug to lower plasma lipids, mainly plasma triglycerides (TG). However, studies with animal models have indicated that MTPi treatment results in the accumulation of hepatic TG. The purpose of this study was to evaluate whether JTT-130, a unique MTPi, targeted to the intestine, would effectively reduce plasma lipids without inducing a fatty liver. METHODS: Male guinea pigs (n = 10 per group) were used for this experiment. Initially all guinea pigs were fed a hypercholesterolemic diet containing 0.08 g/100 g dietary cholesterol for 3 wk. After this period, animals were randomly assigned to diets containing 0 (control), 0.0005 or 0.0015 g/100 g of MTPi for 4 wk. A diet containing 0.05 g/100 g of atorvastatin, an HMG-CoA reductase inhibitor was used as the positive control. At the end of the 7th week, guinea pigs were sacrificed to assess drug effects on plasma and hepatic lipids, composition of LDL and VLDL, hepatic cholesterol and lipoprotein metabolism. RESULTS: Plasma LDL cholesterol and TG were 25 and 30% lower in guinea pigs treated with MTPi compared to controls (P < 0.05). Atorvastatin had the most pronounced hypolipidemic effects with a 35% reduction in LDL cholesterol and 40% reduction in TG. JTT-130 did not induce hepatic lipid accumulation compared to controls. Cholesteryl ester transfer protein (CETP) activity was reduced in a dose dependent manner by increasing doses of MTPi and guinea pigs treated with atorvastatin had the lowest CETP activity (P < 0.01). In addition the number of molecules of cholesteryl ester in LDL and LDL diameter were lower in guinea pigs treated with atorvastatin. In contrast, hepatic enzymes involved in maintaining cholesterol homeostasis were not affected by drug treatment. CONCLUSION: These results suggest that JTT-130 could have potential clinical applications due to its plasma lipid lowering effects with no alterations in hepatic lipid concentrations.
Resumo:
Raf Kinase Inhibitor Protein (RKIP) has been identified as a phosphatidylethanolamine-binding protein capable of inhibiting Raf-1 kinase, an enzyme significant in cell proliferation and cancer development. When properly functioning, RKIP can mediate the expression of Raf-1 kinase and help prevent uncontrolled cell division. RKIP also has suggested, but unclear, roles in spindle fiber formation during mitosis, regulation of apoptosis, and cell motility. The Fenteany laboratory in the Chemistry Department identified a new small molecule, named Locostatin, as a cell migration inhibitor in mammalian cells, with RKIP as its primary molecular target. Dictyostelium discoideum possess two RKIP proteins, RKIP-A and RKIP-B. In order to begin to study the function of RKIP in D. discoideum and its role in cell motility, I created a mutant cell line which lacks a functional RKIP-A gene. In this paper, we show that removal of RKIP-A does not affect vegetative motility, but impairs chemotaxis and development in the presence of drug. Interestingly, RKIP-A knockout mutants appear more resistant to drug effects on vegetative motility than wild-type cells. More research is needed to reconcile these seemingly contrasting results, and to better develop a model for RKIP-A’s role in cell motility.
Resumo:
Orthodontic tooth movement requires external orthodontic forces to be converted to cellular signals that result in the coordinated removal of bone on one side of the tooth (compression side) by osteoclasts, and the formation of new bone by osteoblasts on the other side (tension side). The length of orthodontic treatment can take several years, leading to problems of caries, periodontal disease, root resorption, and patient dissatisfaction. It appears that the velocity of tooth movement is largely dependent on the rate of alveolar bone remodeling. Pharmacological approaches to increase the rate of tooth movement are limited due to patient discomfort, severe root resorption, and drug-induced side effects. Recently, externally applied, cyclical, low magnitude forces (CLMF) have been shown to cause an increase in the bone mineral density of long bones, and in the growth of craniofacial structures in a variety of animal models. In addition, CLMF is well tolerated by the patient and produces no known adverse effects. However, its application in orthodontic tooth movement has not been specifically determined. Since factors that increase alveolar bone remodeling enhance the rate of orthodontic tooth movement, we hypothesized that externally applied, cyclical, low magnitude forces (CLMF) will increase the rate of orthodontic tooth movement. In order to test this hypothesis we used an in vivo rat orthodontic tooth movement model. Our specific aims were: Specific Aim 1: To develop an in vivo rat model for tooth movement. We developed a tooth movement model based upon two established rodent models (Ren and Yoshimatsu et al, See Figure 1.). The amount of variation of tooth movement in rats exposed to 25-60 g of mesial force activated viii from the first molar to the incisor for 4 weeks was calculated. Specific Aim 2: To determine the frequency dose response of externally applied, cyclical, low magnitude forces (CLMF) for maximal tooth movement and osteoclast numbers. Our working hypothesis for this aim was that the amount of tooth movement would be dose dependent on the frequency of application of the CLMF. In order to test this working hypothesis, we varied the frequency of the CLMF from 30, 60, 100, and 200 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks, and measured the amount of tooth movement. We also looked at the number of osteoclasts for the different frequencies; we hypothesized an increase in osteoclasts for the dose respnse of different frequencies. Specific Aim 3: To determine the effects of externally applied, cyclical, low magnitude forces (CLMF) on PDL proliferation. Our working hypothesis for this aim was that PDL proliferation would increase with CLMF. In order to test this hypothesis we compared CLMF (30 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks) performed on the left side (experimental side), to the non-CLMF side, on the right (control side). This was an experimental study with 24 rats in total. The experimental group contained fifteen (15) rats in total, and they all received a spring plus a different frequency of CLMF. Three (3) received a spring and CLMF at 30 Hz, 0.4N for 10 minutes. Six (6) received a spring and CLMF at 60 Hz, 0.4N for 10 minutes. Three (3) received a spring and CLMF at 100 Hz, 0.4N for 10 minutes. Three (3) received a spring and CLMF at 200 Hz, 0.4N for 10 minutes. The control group contained six (6) rats, and received only a spring. An additional ix three (3) rats received CLMF (30 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks) only, with no spring, and were used only for histological purposes. Rats were subjected to the application of orthodontic force from their maxillary left first molar to their left central incisor. In addition some of the rats received externally applied, cyclical, low magnitude force (CLMF) on their maxillary left first molar. micro-CT was used to measure the amount of orthodontic tooth movement. The distance between the maxillary first and second molars, at the most mesial point of the second molar and the most distal point of the first molar (1M-2M distance) were used to evaluate the distance of tooth movement. Immunohistochemistry was performed with TRAP staining and BrdU quantification. Externally applied, cyclical, low magnitude forces (CLMF) do appear to have an effect on the rate, while not significant, of orthodontic tooth movement in rats. It appears that lower CLMF decreases the rate of tooth movement, while higher CLMF increases the rate of tooth movement. Future studies with larger sample sizes are needed to clarify this issue. CLMF does not appear to affect the proliferation in PDL cells, and has no effect on the number of osteoclasts.