5 resultados para Anticipation fertilizer application

em University of Connecticut - USA


Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a lack of plant response to fertilizer K in some sandy soils even though routine soil tests for soil available K are shown to be low. This lack of plant response to K fertilizer application may be explained by K release from nonexchangeable forms. Greenhouse and laboratory experiments were conducted to evaluate (a) response of bentgrass (Agrostis palustris [Agrostis stolonifera var. palustris]) cv. Pencross grown in rootzones with different sand sources to K fertilizer application and (b) K release from nonexchangeable forms from the different sand sources as an index to K availability. Experimental variables in the greenhouse were 2 K levels (0 and 250 mg K/kg soil) and 8 sand rootzone sources. Rootzone soils were sub-irrigated to ensure no K loss from leaching. Two laboratory methods (boiling 1 M HNO3 extraction and continuous leaching with 0.01 M HCl) and total K uptake by the bentgrass were employed to index K release from nonexchangeable forms for each rootzone source. K fertilizer application significantly increased bentgrass yield growing in one rootzone source and root weight in 3 rootzone sources. K uptake by bentgrass and the 2 laboratory methods showed important differences in K release from the sand rootzones. The K removed by the 2 laboratory methods was closely related to leaf tissue K and K uptake, with the 1 M HNO3 extraction method providing the closest fit. The release of K from primary minerals in some rootzones with high sand content is proceeding at rates to satisfy bentgrass requirements for K. The 1 M HNO3 extraction method may provide an alternative to the routine laboratory procedures presently being used to measure the extractable K in sand-based constructed putting greens by measuring K contributed by nonexchangeable forms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fall season fertilization is a widely recommended practice for turfgrass. Fertilizer applied in the fall, however, may be subject to substantial leaching losses. A field study was conducted in Connecticut to determine the timing effects of fall fertilization on nitrate N (NO3-N) leaching, turf color, shoot density, and root mass of a 90% Kentucky bluegrass (Poa pratensis L.), 10% creeping red fescue (Festuca rubra L.) lawn. Treatments consisted of the date of fall fertilization: 15 September, 15 October, 15 November, 15 December, or control which received no fall fertilizer. Percolate water was collected weekly with soil monolith lysimeters. Mean log10 NO3-N concentrations in percolate were higher for fall fertilized treatments than for the control. Mean NO3-N mass collected in percolate water was linearly related to the date of fertilizer application, with higher NO3-N loss for later application dates. Applying fall fertilizer improved turf color and density but there were no differences in color or density among applications made between 15 October and 15 December. These findings suggest that the current recommendation of applying N in mid- to late November in southern New England may not be compatible with water quality goals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ideal nitrogen (N) management for turfgrass supplies sufficient N for high-quality turf without increasing N leaching losses. A greenhouse study was conducted during two 27-week periods to determine if in situ anion exchange membranes (AEMs) could predict nitrate (NO3-N) leaching from a Kentucky bluegrass (Poa pratensis) turf grown on intact soil columns. Treatments consisted of 16 rates of N fertilizer application, from 0 to 98 kg N ha-1 mo-1. Percolate water was collected weekly and analysed for NO3-N. Mean flow-weighted NO3-N concentration and cumulative mass in percolate were exponentially related (pseudo-R2=0.995 and 0.994, respectively) to AEM desorbed soil NO3-N, with a percolate concentration below 10 mg NO3-N L-1 corresponding to an AEM soil NO3-N value of 2.9 micro g cm-2 d-1. Apparent N recovery by turf ranged from 28 to 40% of applied N, with a maximum corresponding to 4.7 micro g cm-2 d-1 AEM soil NO3-N. Turf colour, growth, and chlorophyll index increased with increasing AEM soil NO3-N, but these increases occurred at the expense of increases in NO3-N leaching losses. These results suggest that AEMs might serve as a tool for predicting NO3-N leaching losses from turf.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Financial Accounting Standards Board (FASB) mandated the expensing of stock options with FAS 123 (R). As of March 2006, 749 companies had accelerated the vesting of their employee stock options and avoided a reduction in their reported profits that otherwise would have occurred under the new standard. There are many different motives for the acceleration strategy, and the focus of this study is to determine whether shareholders viewed these motives as either positive or negative. A favorable return subsequent to an acceleration announcement would signify that shareholder's viewed management's motives as positive. An unfavorable return subsequent to an acceleration announcement would signify that shareholder's viewed management's motives as negative. The evidence from this study suggests that shareholders reacted favorably, on average, to acceleration announcements. However, these results lack statistical significance and are based on a small sample, thus, they should be interpreted with caution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various N fertilizer sources are available for lawn turf. Few field studies, however, have determined the losses of nitrate (NO3-N) from lawns receiving different formulations of N fertilizers. The objectives of this study were to determine the differences in NO3-N leaching losses among various N fertilizer sources and to ascertain when losses were most likely to occur. The field experiment was set out in a completely random design on a turf typical of the lawns in southern New England. Treatments consisted of four fertilizer sources with fast- and slow-release N formulations: (i) ammonium nitrate (AN), (ii) polymer-coated sulfur-coated urea (PCSCU), (iii) organic product, and (iv) a nonfertilized control. The experiment was conducted across three years and fertilized to supply a total of 147 kg N ha-1 yr-1. Percolate was collected with zero-tension lysimeters. Flow-weighted NO3-N concentrations were 4.6, 0.57, 0.31, and 0.18 mg L-1 for AN, PCSCU, organic, and the control, respectively. After correcting for control losses, average annual NO3-N leaching losses as a percentage of N applied were 16.8% for AN, 1.7% for PCSCU, and 0.6% for organic. Results indicate that NO3-N leaching losses from lawn turf in southern New England occur primarily during the late fall through the early spring. To reduce the threat of NO3-N leaching losses, lawn turf fertilizers should be formulated with a larger percentage of slow-release N than soluble N.