8 resultados para ARP poisoning
em University of Connecticut - USA
Resumo:
For the past 49 years, the Connecticut Poison Control Center (CTPCC) based at the University of Connecticut Health Center (UCHC), has managed human exposures and poisonings throughout the state and continues to serve as a toxicologic center of excellence. A human exposure may be defined as contact by skin, eye, mouth or inhalation to any substance: animal, mineral or vegetable, including: bites, commercial products, chemicals, drugs, natural remedies and plants among others. A poisoning is any injury to the body resulting from an exposure. Toxicology is the scientific study of the adverse effects of any substance on the body.
Resumo:
The Connecticut Poison Control Center (CPCC) at the University of Connecticut Health Center (UCHC) was established in 1957 under Connecticut General Statute 10a- 132. The CPCC’s main responsibility is to provide 24-hour emergency toxicology management consultations for victims of poisoning, and serve as a source for pharmacology and toxicology-related information. The center monitors the epidemiology of human poisoning and provides surveillance for environmental and occupational chemical exposures, drug abuse, and pharmaceutical interactions and adverse effects. The CPCC performs toxicological research, and provides formal toxicology instruction for allied health professionals, as well as professional and consumer poison prevention education. The CPCC is one of 63 nationwide centers certified by the American Association of Poison Control Centers (AAPCC), and the only poison center in the state of Connecticut. The AAPCC establishes standards of care for poisoning and administers the Toxic Exposure Surveillance System (TESS), a national database of poisoning statistics, to which the CPCC is a contributor.
Resumo:
Millions of houses and apartments built before 1978 have paint that contains lead. Chips, dust, and fumes from this paint can be very dangerous if they are not handled properly. Lead is particularly hazardous to unborn babies, infants, and young children. Volunteers in painting and housing-rehabilitation programs often work in homes that contain lead paint. The work they perform can create a lead hazard if they disturb this paint and produce paint chips or dust. Volunteers Opening Doors is a video program for these volunteers. It explains how volunteers can protect housing residents,themselves, and their families from lead poisoning by using the five keys to lead safety: 1. Protect residents and their belongings. 2. Prepare the work area. 3. Protect yourself from dust and debris. 4. Work wet. 5. Work clean.
Resumo:
BACKGROUND: Clostridium perfringens type A food poisoning is caused by enterotoxigenic C. perfringens type A isolates that typically possess high spore heat-resistance. The molecular basis for C. perfringens spore heat-resistance remains unknown. In the current study, we investigated the role of small, acid-soluble spore proteins (SASPs) in heat-resistance of spores produced by C. perfringens food poisoning isolates. RESULTS: Our current study demonstrated the presence of all three SASP-encoding genes (ssp1, 2 and 3) in five surveyed C. perfringens clinical food poisoning isolates. beta-Glucuronidase assay showed that these ssp genes are expressed specifically during sporulation. Consistent with these expression results, our study also demonstrated the production of SASPs by C. perfringens food poisoning isolates. When the heat sensitivities of spores produced by a ssp3 knock-out mutant of a C. perfringens food poisoning isolate was compared with that of spores of the wild-type strain, spores of the ssp3 mutant were found to exhibit a lower decimal reduction value (D value) at 100 degrees C than exhibited by the spores of wild-type strain. This effect was restored by complementing the ssp3 mutant with a recombinant plasmid carrying wild-type ssp3, suggesting that the observed differences in D values between spores of wild-type versus ssp3 mutant was due to the specific inactivation of ssp3. Furthermore, our DNA protection assay demonstrated that C. perfringens SASPs can protect DNA from DNase I digestion. CONCLUSION: The results from our current study provide evidences that SASPs produced by C. perfringens food poisoning isolates play a role in protecting their spores from heat-damage, which is highly significant and relevant from a food safety perspective. Further detailed studies on mechanism of action of SASPs from C. perfringens should help in understanding the mechanism of protection of C. perfringens spores from heat-damage.
Resumo:
Millions of houses and apartments built before 1978 have paint that contains lead. Chips, dust, and fumes from this paint can be very dangerous if they are not handled properly. Lead is particularly hazardous to unborn babies, infants, and young children. Volunteers in painting and housing-rehabilitation programs often work in homes that contain lead paint. The work they perform can create a lead hazard if they disturb this paint and produce paint chips or dust. Volunteers Opening Doors is a video program for these volunteers. It explains how volunteers can protect housing residents,themselves, and their families from lead poisoning by using the five keys to lead safety: 1. Protect residents and their belongings. 2. Prepare the work area. 3. Protect yourself from dust and debris. 4. Work wet. 5. Work clean.