1 resultado para •Disposable Towels
em University of Connecticut - USA
Filtro por publicador
- Repository Napier (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Aston University Research Archive (26)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Brock University, Canada (1)
- CentAUR: Central Archive University of Reading - UK (8)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (3)
- Digital Peer Publishing (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (9)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (19)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Memorial University Research Repository (2)
- QSpace: Queen's University - Canada (1)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (60)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- Scielo Saúde Pública - SP (11)
- Scientific Open-access Literature Archive and Repository (1)
- South Carolina State Documents Depository (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (2)
- Universidade do Minho (4)
- Universidade Federal de Uberlândia (2)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Université de Lausanne, Switzerland (9)
- Université de Montréal (1)
- Université de Montréal, Canada (1)
- University of Connecticut - USA (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (5)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This paper uses Bayesian vector autoregressive models to examine the usefulness of leading indicators in predicting US home sales. The benchmark Bayesian model includes home sales, the price of homes, the mortgage rate, real personal disposable income, and the unemployment rate. We evaluate the forecasting performance of six alternative leading indicators by adding each, in turn, to the benchmark model. Out-of-sample forecast performance over three periods shows that the model that includes building permits authorized consistently produces the most accurate forecasts. Thus, the intention to build in the future provides good information with which to predict home sales. Another finding suggests that leading indicators with longer leads outperform the short-leading indicators.