5 resultados para wild running

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The four basic helix-loop-helix myogenic transcription factors, myogenin, Myf5, MRF4, and MyoD are critical for embryonic skeletal muscle development. Myogenin is necessary for the terminal differentiation of myoblasts into myofibers during embryogenesis, but little is known about the roles played by myogenin in adult skeletal muscle function and metabolism. Furthermore, while metabolism is a well-studied physiological process, how it is regulated at the transcriptional level remains poorly understood. In this study, my aim was to determine the function of myogenin in adult skeletal muscle metabolism, exercise capacity, and regeneration. To investigate this, I utilized a mouse strain harboring the Myogflox allele and a Cre recombinase transgene, enabling the efficient deletion of myogenin in the adult mouse. Myogflox/flox mice were stressed physically through involuntary treadmill running and by breeding them with a strain harboring the Duchenne’s muscular dystrophy (DMDmdx) allele. Surprisingly, Myog-deleted animals exhibited an enhanced capacity for exercise, running farther and faster than their wild-type counterparts. Increased lactate production and utilization of glucose as a fuel source indicated that Myog-deleted animals exhibited an increased glycolytic flux. Hypoglycemic Myog-deleted mice no longer possessed the ability to outrun their wild-type counterparts, implying the ability of these animals to further deplete their glucose reserves confers their enhanced exercise capacity. Moreover, Myog-deleted mice exhibited an enhanced response to long-term exercise training. The mice developed a greater proportion of type 1 oxidative muscle fibers, and displayed increased levels of succinate dehydrogenase activity, indicative of increased oxidative metabolism. Mdx:Myog-deleted mice exhibited a similar phenotype, outperforming their mdx counterparts, although lagging behind wild-type animals. The morphology of muscle tissue from mdx:Myog-deleted mice appears to mimic that of mdx animals, indicating that myogenin is dispensable for adult skeletal muscle regeneration. Through global gene expression profiling and quantitative (q)RT-PCR, I identified a unique set of putative myogenin-dependent genes involved in regulating metabolic processes. These data suggest myogenin’s functions during adulthood are distinctly different than those during embryogenesis, and myogenin acts as a high-level transcription factor regulating metabolic activity in adult skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Citrobacter rodentium is the rodent equivalent of human enteropathogenic Escherichia coli infection. This study investigated regulation of hepatic and renal cytochrome P450 (P450) mRNAs, hepatic P450 proteins, cytokines, and acute phase proteins during C. rodentium infection. Female C3H/HeOuJ (HeOu) and C3H/HeJ (HeJ) mice [which lack functional toll-like receptor 4 (TLR4)] were infected with C. rodentium by oral gavage and sacrificed 6 days later. Hepatic CYP4A10 and 4A14 mRNAs were decreased in HeOu mice (<4% of control). CYP3A11, 2C29, 4F14, and 4F15 mRNAs were reduced to 16 to 55% of control levels, whereas CYP2A5, 4F16, and 4F18 mRNAs were induced (180, 190, and 600% of control, respectively). The pattern of P450 regulation in HeJ mice was similar to that in HeOu mice for most P450s, with the exception of the TLR4 dependence of CYP4F15. Hepatic CYP2C, 3A, and 4A proteins in both groups were decreased, whereas CYP2E protein was not. Renal CYP4A10 and 4A14 mRNAs were significantly down-regulated in HeOu mice, whereas other P450s were unaffected. Most renal P450 mRNAs in infected HeJ mice were increased, notably CYP4A10, 4A14, 4F18, 2A5, and 3A13. Hepatic levels of interleukin (IL)-1beta, IL-6, and tumor necrosis factor alpha (TNFalpha) mRNAs were significantly increased in infected HeOu mice, whereas only TNFalpha mRNA was significantly increased in HeJ mice. Hepatic alpha1-acid glycoprotein was induced in both groups, whereas alpha-fibrinogen and angiotensinogen were unchanged. These data indicate that hepatic inflammation induced by C. rodentium infection is mainly TLR4-independent and suggest that hepatic P450 down-regulation in this model may be cytokine-mediated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dominant-negative mutations in the homopentameric extracellular matrix glycoprotein cartilage oligomeric matrix protein (COMP) result in inappropriate intracellular retention of misfolded COMP in the rough endoplasmic reticulum of chondrocytes, causing chondrocyte cell death, which leads to two skeletal dysplasias: pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EDM1). COMP null mice show no adverse effects on normal bone development and growth, suggesting a possible therapy involving removal of COMP mRNA. The goal of this study was to assess the ability of a hammerhead ribozyme (Ribo56, designed against the D469del mutation) to reduce COMP mRNA expression. In COS7 cells transfected with plasmids that overexpress wild-type or mutant COMP mRNA and Ribo56, the ribozyme reduced overexpressed normal COMP mRNA by 46% and mutant COMP mRNA by 56% in a dose-dependent manner. Surprisingly, the use of recombinant adenoviruses to deliver wild-type or mutant COMP mRNA and Ribo56 simultaneously into COS7 cells proved problematic for the activity of the ribozyme to reduce COMP expression. However, in normal human costochondral cells (hCCCs) infected only with adenoviruses expressing Ribo56, expression of endogenous wild-type COMP mRNA was reduced in a dose-dependent manner by 50%. In chondrocytes that contain heterozygous COMP mutations (D469del, G427E and D511Y) that cause PSACH, Ribo56 was more effective at reducing COMP mRNA (up to 70%). These results indicate that Ribo56 is effective at reducing mutant and wild-type COMP levels in cells and suggests a possible mode of therapy to reduce the mutant protein load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A UV-induced mutation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPD) was characterized in the CHO clone A24. The asymmetric 4-banded zymogram and an in vitro GAPD activity equal to that of wild type cells were not consistent with models of a mutant heterozygote producing equal amounts of wild type and either catalytically active or inactive mutant subunits that interacted randomly. Cumulative evidence indicated that the site of the mutation was the GAPD structural locus expressed in CHO wild type cells, and that the mutant allele coded for a subunit that differed from the wild type subunit in stability and kinetics. The evidence included the appearance of a fifth band, the putative mutant homotetramer, after addition of the substrate glyceraldehyde-3-phosphate (GAP) to the gel matrix; dilution experiments indicating stability differences between the subunits; experiments with subsaturating levels of GAP indicating differences in affinity for the substrate; GAPD zymograms of A24 x mouse hybrids that were consistent with the presence of two distinct A24 subunits; independent segregation of A24 wild type and mutant electrophoretic bands from the hybrids, which was inconsistent with models of mutation of a locus involved in posttranslational modification; the mapping of both wild type and mutant forms of GAPD to chromosome 8; and the failure to detect any evidence of posttranslational modification (of other A24 isozymes, or through mixing of homogenates of A24 and mouse).^ The extent of skewing of the zymogram toward the wild type band, and the unreduced in vitro activity were inconsistent with models based solely on differences in activity of the two subunits. Comparison of wild type homotetramer bands in wild type cells and A24 suggested the latter had a preponderance of wild type subunits over mutant subunits, and had more GAPD tetramers than did CHO controls.^ Two CHO linkages, GAPD-triose phosphate isomerase, and acid phosphatase 2-adenosine deaminase were reported provisionally, and several others were confirmed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the mouse, gamete recognition is mediated in part by the binding of sperm surface $\beta$1,4 galactosyltransferase (GalTase) to specific oligosaccharide residues on the zona pellucida ZP3. The expression of GalTase on the sperm surface is regulated by alleles within the distal segment of the T/t complex and results in a haploid-specific increase in GalTase expression on spermatids and sperm from t-bearing males, suggesting that differences in sperm GalTase activity may contribute to t-sperm transmission ratio distortion. In this study, the expression of GalTase RNA during wild-type and T/t-mutant spermatogenesis was characterized and the role of GalTase was analyzed in transmission ratio distortion. It was found that spermatogenic cells predominantly express the long form of the GalTase RNA, which encodes the GalTase protein that is preferentially targeted to the cell surface in somatic cells. In wild-type testes, GalTase RNA accumulates during the maturation of primary spermatocytes, reaches peak levels prior to meiosis, and decreases and meiosis. GalTase RNA accumulates to similar levels during the maturation of +/t and t/t primary spermatocytes, but unlike wild-type, the level of GalTase RNA in t-spermatocytes remains elevated during meiotic division. Consequently, spermatids in t-mutant testes inherit higher levels of GalTase RNA than do wild-type spermatids, which likely accounts for the haploid-specific increase in surface GalTase activity characteristic of spermatids from t-bearing mice.^ The functional significance of the increased GalTase activity during t-sperm transmission ratio distortion was determined by examining the distribution of GalTase RNA and surface GalTase protein in haploid spermatids from +/t males. Results show that +- and t-spermatids have similar levels of both GalTase RNA and protein, indicating that transmission ratio distortion in +/t mice is not likely due to haploid-specific differences in sperm surface GalTase activity.^ The presence of GalTase on the surface of an early spermatogenic cells before it is required on the mature sperm to perform its function during gamete binding suggests a separate function for GalTase in Sertoli-germ cell adhesion. Studies indicate that cell surface GalTase partly mediates the initial adhesion of pachytene spermatocytes, but not haploid spermatids, to Sertoli cells. ^