1 resultado para visual representation
em DigitalCommons@The Texas Medical Center
Resumo:
These three manuscripts are presented as a PhD dissertation for the study of using GeoVis application to evaluate telehealth programs. The primary reason of this research was to understand how the GeoVis applications can be designed and developed using combined approaches of HC approach and cognitive fit theory and in terms utilized to evaluate telehealth program in Brazil. First manuscript The first manuscript in this dissertation presented a background about the use of GeoVisualization to facilitate visual exploration of public health data. The manuscript covered the existing challenges that were associated with an adoption of existing GeoVis applications. The manuscript combines the principles of Human Centered approach and Cognitive Fit Theory and a framework using a combination of these approaches is developed that lays the foundation of this research. The framework is then utilized to propose the design, development and evaluation of “the SanaViz” to evaluate telehealth data in Brazil, as a proof of concept. Second manuscript The second manuscript is a methods paper that describes the approaches that can be employed to design and develop “the SanaViz” based on the proposed framework. By defining the various elements of the HC approach and CFT, a mixed methods approach is utilized for the card sorting and sketching techniques. A representative sample of 20 study participants currently involved in the telehealth program at the NUTES telehealth center at UFPE, Recife, Brazil was enrolled. The findings of this manuscript helped us understand the needs of the diverse group of telehealth users, the tasks that they perform and helped us determine the essential features that might be necessary to be included in the proposed GeoVis application “the SanaViz”. Third manuscript The third manuscript involved mix- methods approach to compare the effectiveness and usefulness of the HC GeoVis application “the SanaViz” against a conventional GeoVis application “Instant Atlas”. The same group of 20 study participants who had earlier participated during Aim 2 was enrolled and a combination of quantitative and qualitative assessments was done. Effectiveness was gauged by the time that the participants took to complete the tasks using both the GeoVis applications, the ease with which they completed the tasks and the number of attempts that were taken to complete each task. Usefulness was assessed by System Usability Scale (SUS), a validated questionnaire tested in prior studies. In-depth interviews were conducted to gather opinions about both the GeoVis applications. This manuscript helped us in the demonstration of the usefulness and effectiveness of HC GeoVis applications to facilitate visual exploration of telehealth data, as a proof of concept. Together, these three manuscripts represent challenges of combining principles of Human Centered approach, Cognitive Fit Theory to design and develop GeoVis applications as a method to evaluate Telehealth data. To our knowledge, this is the first study to explore the usefulness and effectiveness of GeoVis to facilitate visual exploration of telehealth data. The results of the research enabled us to develop a framework for the design and development of GeoVis applications related to the areas of public health and especially telehealth. The results of our study showed that the varied users were involved with the telehealth program and the tasks that they performed. Further it enabled us to identify the components that might be essential to be included in these GeoVis applications. The results of our research answered the following questions; (a) Telehealth users vary in their level of understanding about GeoVis (b) Interaction features such as zooming, sorting, and linking and multiple views and representation features such as bar chart and choropleth maps were considered the most essential features of the GeoVis applications. (c) Comparing and sorting were two important tasks that the telehealth users would perform for exploratory data analysis. (d) A HC GeoVis prototype application is more effective and useful for exploration of telehealth data than a conventional GeoVis application. Future studies should be done to incorporate the proposed HC GeoVis framework to enable comprehensive assessment of the users and the tasks they perform to identify the features that might be necessary to be a part of the GeoVis applications. The results of this study demonstrate a novel approach to comprehensively and systematically enhance the evaluation of telehealth programs using the proposed GeoVis Framework.