2 resultados para transformation behavior
em DigitalCommons@The Texas Medical Center
Resumo:
Although abundant in well-differentiated rat thyroid cells, Rap1GAP expression was extinguished in a subset of human thyroid tumor-derived cell lines. Intriguingly, Rap1GAP was downregulated selectively in tumor cell lines that had acquired a mesenchymal morphology. Restoring Rap1GAP expression to these cells inhibited cell migration and invasion, effects that were correlated with the inhibition of Rap1 and Rac1 activity. The reexpression of Rap1GAP also inhibited DNA synthesis and anchorage-independent proliferation. Conversely, eliminating Rap1GAP expression in rat thyroid cells induced a transient increase in cell number. Strikingly, Rap1GAP expression was abolished by Ras transformation. The downregulation of Rap1GAP by Ras required the activation of the Raf/MEK/extracellular signal-regulated kinase cascade and was correlated with the induction of mesenchymal morphology and migratory behavior. Remarkably, the acute expression of oncogenic Ras was sufficient to downregulate Rap1GAP expression in rat thyroid cells, identifying Rap1GAP as a novel target of oncogenic Ras. Collectively, these data implicate Rap1GAP as a putative tumor/invasion suppressor in the thyroid. In support of that notion, Rap1GAP was highly expressed in normal human thyroid cells and downregulated in primary thyroid tumors.
Resumo:
Glioblastoma multiforme (GBM) is an aggressive, high grade brain tumor. Microarray studies have shown a subset of GBMs with a mesenchymal gene signature. This subset is associated with poor clinical outcome and resistance to treatment. To establish the molecular drivers of this mesenchymal transition, we correlated transcription factor expression to the mesenchymal signature and identified transcriptional co-activator with PDZ-binding motif (TAZ) to be highly associated with the mesenchymal shift. High TAZ expression correlated with worse clinical outcome and higher grade. These data led to the hypothesis that TAZ is critical to the mesenchymal transition and aggressive clinical behavior seen in GBM. We investigated the expression of TAZ, its binding partner TEAD, and the mesenchymal marker FN1 in human gliomas. Western analyses demonstrated increased expression of TAZ, TEAD4, and FN1 in GBM relative to lower grade gliomas. We also identified CpG islands in the TAZ promoter that are methylated in most lower grade gliomas, but not in GBMs. TAZ-methylated glioma stem cell (GSC) lines treated with a demethylation agent showed an increase in mRNA and protein TAZ expression; therefore, methylation may be another novel way TAZ is regulated since TAZ is epigenetically silenced in tumors with a better clinical outcome. To further characterize the role of TAZ in gliomagenesis, we stably silenced or over-expressed TAZ in GSCs. Silencing of TAZ decreased invasion, self-renewal, mesenchymal protein expression, and tumor-initiating capacity. Over-expression of TAZ led to an increase in invasion, mesenchymal protein expression, mesenchymal differentiation, and tumor-initiating ability. These actions are dependent on TAZ interacting with TEAD since all these effects were abrogated with TAZ could not bind to TEAD. We also show that TAZ and TEAD directly bind to mesenchymal gene promoters. Thus, TAZ-TEAD interaction is critically important in the mesenchymal shift and in the aggressive clinical behavior of GBM. We identified TAZ as a regulator of the mesenchymal transition in gliomas. TAZ could be used as a biomarker to both estimate prognosis and stratify patients into clinically relevant subgroups. Since mesenchymal transition is correlated to tumor aggressiveness, strategies to target and inhibit TAZ-TEAD and the downstream gene targets may be warranted in alternative treatment.