2 resultados para tonometry

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To establish the identity of a prominent protein, approximately 70 kDa, that is markedly increased in the retina of monkeys with experimental glaucoma compared with the fellow control retina, the relationship to glaucoma severity, and its localization in the retina. METHODS: Retinal extracts were subjected to 2-D gel electrophoresis to identify differentially expressed proteins. Purified peptides from the abundant 70 kDa protein were analyzed and identified by liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) separation, and collision-induced dissociation sequencing. Protein identity was performed on MASCOT (Matrix Science, Boston, MA) and confirmed by Western blot. The relationship between the increase in this protein and glaucoma severity was investigated by regression analyses. Protein localization in retina was evaluated by immunohistochemistry with confocal imaging. RESULTS: The abundant protein was identified as Macaca mulatta serum albumin precursor (67 kDa) from eight non-overlapping proteolytic fragments, and the identity was confirmed by Western blot. The average increase in retinal albumin content was 2.3 fold (P = 0.015). In glaucoma eyes, albumin was localized to some neurons of the inner nuclear layer, in the inner plexiform layer, and along the vitreal surface, but it was only found in blood vessels in control retinas. CONCLUSIONS: Albumin is the abundant protein found in the glaucomatous monkey retinas. The increased albumin is primarily localized to the inner retina where oxidative damage associated with experimental glaucoma is known to be prominent. Since albumin is a major antioxidant, the increase of albumin in the retinas of eyes with experimental glaucoma may serve to protect the retina against oxidative damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. The aim of this research was to evaluate the effect of enteral feeding on tonometric measurement of gastric regional carbon dioxide levels (PrCO2) in normal healthy volunteers. Design and methods. The sample included 12 healthy volunteers recruited by the University Clinical Research Center (UCRC). An air tonometry system monitored PrCO2 levels using a tonometer placed in the lumen of the stomach via orogastric intubation. PrCO2 was automatically measured and recorded every 10 minutes throughout the five hour study period. An oral dose of famotidine 40 mg was self-administered the evening prior to and the morning of the study. Instillation of Isocal® High Nitrogen (HN) was used for enteral feeding in hourly escalating doses of 0, 40, 60, and 80 ml/hr with no feeding during the fifth hour. Results . PrCO2 measurements at time 0 and 10 minutes (41.4 ± 6.5 and 41.8 ± 5.7, respectively) demonstrated biologic precision (Levene's Test statistic = 0.085, p-value 0.774). Biologic precision was lost between T130 and T140 40 when compared to baseline TO (Levene's Test statistic = 1.70, p-value 0.205; and 3.205, p-value 0.042, respectively) and returned to non-significant levels between T270 and T280 (Levene's Test statistic = 3.083, p-value 0.043; and 2.307, p-value 0.143, respectively). Isocal® HN significantly affected the biologic accuracy of PrCO2 measurements (repeated measures ANOVA F 4.91, p-value <0.001). After 20 minutes of enteral feeding at 40 ml/hr, PrCO2 significantly increased (41.4 ± 6.5 to 46.6 ± 4.25, F = 5.4, p-value 0.029). Maximum variance from baseline (41.4 ± 6.5 to 61.3 ± 15.2, F = 17.22, p-value <0.001) was noted after 30 minutes of Isocal® HN at 80 ml/hr or 210 minutes from baseline. The significant elevations in PrCO2 continued throughout the study. Sixty minutes after discontinuation of enteral feeding, PrCO2 remained significantly elevated from baseline (41.4 ± 6.5 to 51.8 ± 9.2, F = 10.15, p-value 0.004). Conclusion. Enteral feeding with Isocal® HN significantly affects the precision and accuracy of PrCO2 measurements in healthy volunteers. ^