11 resultados para time-to-event

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of size as well as power of a test is a vital part of a Clinical Trial Design. This research focuses on the simulation of clinical trial data with time-to-event as the primary outcome. It investigates the impact of different recruitment patterns, and time dependent hazard structures on size and power of the log-rank test. A non-homogeneous Poisson process is used to simulate entry times according to the different accrual patterns. A Weibull distribution is employed to simulate survival times according to the different hazard structures. The current study utilizes simulation methods to evaluate the effect of different recruitment patterns on size and power estimates of the log-rank test. The size of the log-rank test is estimated by simulating survival times with identical hazard rates between the treatment and the control arm of the study resulting in a hazard ratio of one. Powers of the log-rank test at specific values of hazard ratio (≠1) are estimated by simulating survival times with different, but proportional hazard rates for the two arms of the study. Different shapes (constant, decreasing, or increasing) of the hazard function of the Weibull distribution are also considered to assess the effect of hazard structure on the size and power of the log-rank test. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Renal involvement is a serious manifestation of systemic lupus erythematosus (SLE); it may portend a poor prognosis as it may lead to end-stage renal disease (ESRD). The purpose of this study was to determine the factors predicting the development of renal involvement and its progression to ESRD in a multi-ethnic SLE cohort (PROFILE). METHODS AND FINDINGS: PROFILE includes SLE patients from five different United States institutions. We examined at baseline the socioeconomic-demographic, clinical, and genetic variables associated with the development of renal involvement and its progression to ESRD by univariable and multivariable Cox proportional hazards regression analyses. Analyses of onset of renal involvement included only patients with renal involvement after SLE diagnosis (n = 229). Analyses of ESRD included all patients, regardless of whether renal involvement occurred before, at, or after SLE diagnosis (34 of 438 patients). In addition, we performed a multivariable logistic regression analysis of the variables associated with the development of renal involvement at any time during the course of SLE.In the time-dependent multivariable analysis, patients developing renal involvement were more likely to have more American College of Rheumatology criteria for SLE, and to be younger, hypertensive, and of African-American or Hispanic (from Texas) ethnicity. Alternative regression models were consistent with these results. In addition to greater accrued disease damage (renal damage excluded), younger age, and Hispanic ethnicity (from Texas), homozygosity for the valine allele of FcgammaRIIIa (FCGR3A*GG) was a significant predictor of ESRD. Results from the multivariable logistic regression model that included all cases of renal involvement were consistent with those from the Cox model. CONCLUSIONS: Fcgamma receptor genotype is a risk factor for progression of renal disease to ESRD. Since the frequency distribution of FCGR3A alleles does not vary significantly among the ethnic groups studied, the additional factors underlying the ethnic disparities in renal disease progression remain to be elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Issue editor introduction to Volume 2, Issue 2 of the Journal of Applied Research on Children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research was two-fold; to investigate the effect of institutionalization on death and CD4 decline in a cohort of 325 HIV-infected Romanian children, and to investigate the effect of disclosure of the child's own HIV status in this cohort. All children were treated with Kaletra-based highly active antiretroviral therapy, and were followed from November, 2001 through October, 2004. The mean age of the children included in the cohort is 13. The study found that children in biological families were more likely to experience disease progression through either death or CD4 decline than children in institutions (p=0.04). The family home-style institution may prove to be a replicable model for the safe and appropriate care of HIV-infected orphaned and abandoned children and teens. The study also found that children who do not know their own HIV infection status were more likely to experience disease progression through either death or CD4 decline than children who know their HIV diagnosis (p=0.03). This evidence suggests that, in the context of highly active anti retroviral therapy, knowledge of one's own HIV infection status is associated with delayed HIV disease progression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prevalent sampling is an efficient and focused approach to the study of the natural history of disease. Right-censored time-to-event data observed from prospective prevalent cohort studies are often subject to left-truncated sampling. Left-truncated samples are not randomly selected from the population of interest and have a selection bias. Extensive studies have focused on estimating the unbiased distribution given left-truncated samples. However, in many applications, the exact date of disease onset was not observed. For example, in an HIV infection study, the exact HIV infection time is not observable. However, it is known that the HIV infection date occurred between two observable dates. Meeting these challenges motivated our study. We propose parametric models to estimate the unbiased distribution of left-truncated, right-censored time-to-event data with uncertain onset times. We first consider data from a length-biased sampling, a specific case in left-truncated samplings. Then we extend the proposed method to general left-truncated sampling. With a parametric model, we construct the full likelihood, given a biased sample with unobservable onset of disease. The parameters are estimated through the maximization of the constructed likelihood by adjusting the selection bias and unobservable exact onset. Simulations are conducted to evaluate the finite sample performance of the proposed methods. We apply the proposed method to an HIV infection study, estimating the unbiased survival function and covariance coefficients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. 3-hydroxy-3-methylglutaryl CoA reductase inhibitor ("statin") have been widely used for hypercholesteroremia and Statin induced myopathy is well known. Whether Statins contribute to exacerbation of Myasthenia Gravis (MG) requiring hospitalization is not well known. ^ Objectives. To determine the frequency of statin use in patients with MG seen at the neuromuscular division at University of Alabama in Birmingham (UAB) and to evaluate any association between use of statins and MG exacerbations requiring hospitalization in patients with an established diagnosis of Myasthenia Gravis. ^ Methods. We reviewed records of all current MG patients at the UAB neuromuscular department to obtain details on use of statins and any hospitalizations due to exacerbation of MG over the period from January 1, 2003 to December 31, 2006. ^ Results. Of the 113 MG patients on whom information was available for this period, 40 were on statins during at least one clinic visit. Statin users were more likely to be older (mean age 60.2 vs 53.8, p = 0.029), male (70.0% vs 43.8%, p = 0.008), and had a later onset of myasthenia gravis (mean age in years at onset 49.8 versus 42.9, p = 0.051). The total number of hospitalizations or the proportion of subjects who had at least one hospitalization during the study period did not differ in the statin versus no-statin group. However, when hospitalizations which occurred from a suspected precipitant were excluded ("event"), the proportion of subjects who had at least one such event during the study period was higher in the group using statins. In the final Cox proportional hazard model for cumulative time to event, statin use (OR = 6.44, p <0.01) and baseline immunosuppression (OR = 3.03, p = 0.07) were found to increase the odds of event. ^ Conclusions. Statin use may increase the rate of hospitalizations due to MG exacerbation, when excluding exacerbations precipitated by other suspected factors.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multivariate frailty hazard model is developed for joint-modeling of three correlated time-to-event outcomes: (1) local recurrence, (2) distant recurrence, and (3) overall survival. The term frailty is introduced to model population heterogeneity. The dependence is modeled by conditioning on a shared frailty that is included in the three hazard functions. Independent variables can be included in the model as covariates. The Markov chain Monte Carlo methods are used to estimate the posterior distributions of model parameters. The algorithm used in present application is the hybrid Metropolis-Hastings algorithm, which simultaneously updates all parameters with evaluations of gradient of log posterior density. The performance of this approach is examined based on simulation studies using Exponential and Weibull distributions. We apply the proposed methods to a study of patients with soft tissue sarcoma, which motivated this research. Our results indicate that patients with chemotherapy had better overall survival with hazard ratio of 0.242 (95% CI: 0.094 - 0.564) and lower risk of distant recurrence with hazard ratio of 0.636 (95% CI: 0.487 - 0.860), but not significantly better in local recurrence with hazard ratio of 0.799 (95% CI: 0.575 - 1.054). The advantages and limitations of the proposed models, and future research directions are discussed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the area under the receiver operating characteristic (AUC) is the most popular measure of the performance of prediction models, it has limitations, especially when it is used to evaluate the added discrimination of a new biomarker in the model. Pencina et al. (2008) proposed two indices, the net reclassification improvement (NRI) and integrated discrimination improvement (IDI), to supplement the improvement in the AUC (IAUC). Their NRI and IDI are based on binary outcomes in case-control settings, which do not involve time-to-event outcome. However, many disease outcomes are time-dependent and the onset time can be censored. Measuring discrimination potential of a prognostic marker without considering time to event can lead to biased estimates. In this dissertation, we have extended the NRI and IDI to survival analysis settings and derived the corresponding sample estimators and asymptotic tests. Simulation studies were conducted to compare the performance of the time-dependent NRI and IDI with Pencina’s NRI and IDI. For illustration, we have applied the proposed method to a breast cancer study.^ Key words: Prognostic model, Discrimination, Time-dependent NRI and IDI ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treating patients with combined agents is a growing trend in cancer clinical trials. Evaluating the synergism of multiple drugs is often the primary motivation for such drug-combination studies. Focusing on the drug combination study in the early phase clinical trials, our research is composed of three parts: (1) We conduct a comprehensive comparison of four dose-finding designs in the two-dimensional toxicity probability space and propose using the Bayesian model averaging method to overcome the arbitrariness of the model specification and enhance the robustness of the design; (2) Motivated by a recent drug-combination trial at MD Anderson Cancer Center with a continuous-dose standard of care agent and a discrete-dose investigational agent, we propose a two-stage Bayesian adaptive dose-finding design based on an extended continual reassessment method; (3) By combining phase I and phase II clinical trials, we propose an extension of a single agent dose-finding design. We model the time-to-event toxicity and efficacy to direct dose finding in two-dimensional drug-combination studies. We conduct extensive simulation studies to examine the operating characteristics of the aforementioned designs and demonstrate the designs' good performances in various practical scenarios.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixture modeling is commonly used to model categorical latent variables that represent subpopulations in which population membership is unknown but can be inferred from the data. In relatively recent years, the potential of finite mixture models has been applied in time-to-event data. However, the commonly used survival mixture model assumes that the effects of the covariates involved in failure times differ across latent classes, but the covariate distribution is homogeneous. The aim of this dissertation is to develop a method to examine time-to-event data in the presence of unobserved heterogeneity under a framework of mixture modeling. A joint model is developed to incorporate the latent survival trajectory along with the observed information for the joint analysis of a time-to-event variable, its discrete and continuous covariates, and a latent class variable. It is assumed that the effects of covariates on survival times and the distribution of covariates vary across different latent classes. The unobservable survival trajectories are identified through estimating the probability that a subject belongs to a particular class based on observed information. We applied this method to a Hodgkin lymphoma study with long-term follow-up and observed four distinct latent classes in terms of long-term survival and distributions of prognostic factors. Our results from simulation studies and from the Hodgkin lymphoma study demonstrated the superiority of our joint model compared with the conventional survival model. This flexible inference method provides more accurate estimation and accommodates unobservable heterogeneity among individuals while taking involved interactions between covariates into consideration.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is the most common non-skin cancer and the second leading cause of cancer-related death in women in the United States. Studies on ipsilateral breast tumor relapse (IBTR) status and disease-specific survival will help guide clinic treatment and predict patient prognosis.^ After breast conservation therapy, patients with breast cancer may experience breast tumor relapse. This relapse is classified into two distinct types: true local recurrence (TR) and new ipsilateral primary tumor (NP). However, the methods used to classify the relapse types are imperfect and are prone to misclassification. In addition, some observed survival data (e.g., time to relapse and time from relapse to death)are strongly correlated with relapse types. The first part of this dissertation presents a Bayesian approach to (1) modeling the potentially misclassified relapse status and the correlated survival information, (2) estimating the sensitivity and specificity of the diagnostic methods, and (3) quantify the covariate effects on event probabilities. A shared frailty was used to account for the within-subject correlation between survival times. The inference was conducted using a Bayesian framework via Markov Chain Monte Carlo simulation implemented in softwareWinBUGS. Simulation was used to validate the Bayesian method and assess its frequentist properties. The new model has two important innovations: (1) it utilizes the additional survival times correlated with the relapse status to improve the parameter estimation, and (2) it provides tools to address the correlation between the two diagnostic methods conditional to the true relapse types.^ Prediction of patients at highest risk for IBTR after local excision of ductal carcinoma in situ (DCIS) remains a clinical concern. The goals of the second part of this dissertation were to evaluate a published nomogram from Memorial Sloan-Kettering Cancer Center, to determine the risk of IBTR in patients with DCIS treated with local excision, and to determine whether there is a subset of patients at low risk of IBTR. Patients who had undergone local excision from 1990 through 2007 at MD Anderson Cancer Center with a final diagnosis of DCIS (n=794) were included in this part. Clinicopathologic factors and the performance of the Memorial Sloan-Kettering Cancer Center nomogram for prediction of IBTR were assessed for 734 patients with complete data. Nomogram for prediction of 5- and 10-year IBTR probabilities were found to demonstrate imperfect calibration and discrimination, with an area under the receiver operating characteristic curve of .63 and a concordance index of .63. In conclusion, predictive models for IBTR in DCIS patients treated with local excision are imperfect. Our current ability to accurately predict recurrence based on clinical parameters is limited.^ The American Joint Committee on Cancer (AJCC) staging of breast cancer is widely used to determine prognosis, yet survival within each AJCC stage shows wide variation and remains unpredictable. For the third part of this dissertation, biologic markers were hypothesized to be responsible for some of this variation, and the addition of biologic markers to current AJCC staging were examined for possibly provide improved prognostication. The initial cohort included patients treated with surgery as first intervention at MDACC from 1997 to 2006. Cox proportional hazards models were used to create prognostic scoring systems. AJCC pathologic staging parameters and biologic tumor markers were investigated to devise the scoring systems. Surveillance Epidemiology and End Results (SEER) data was used as the external cohort to validate the scoring systems. Binary indicators for pathologic stage (PS), estrogen receptor status (E), and tumor grade (G) were summed to create PS+EG scoring systems devised to predict 5-year patient outcomes. These scoring systems facilitated separation of the study population into more refined subgroups than the current AJCC staging system. The ability of the PS+EG score to stratify outcomes was confirmed in both internal and external validation cohorts. The current study proposes and validates a new staging system by incorporating tumor grade and ER status into current AJCC staging. We recommend that biologic markers be incorporating into revised versions of the AJCC staging system for patients receiving surgery as the first intervention.^ Chapter 1 focuses on developing a Bayesian method to solve misclassified relapse status and application to breast cancer data. Chapter 2 focuses on evaluation of a breast cancer nomogram for predicting risk of IBTR in patients with DCIS after local excision gives the statement of the problem in the clinical research. Chapter 3 focuses on validation of a novel staging system for disease-specific survival in patients with breast cancer treated with surgery as the first intervention. ^