2 resultados para time-shifting
em DigitalCommons@The Texas Medical Center
Resumo:
Subfields of the hippocampus display differential dynamics in processing a spatial environment, especially when changes are introduced to the environment. Specifically, when familiar cues in the environment are spatially rearranged, place cells in the CA3 subfield tend to rotate with a particular set of cues (e.g., proximal cues), maintaining a coherent spatial representation. Place cells in CA1, in contrast, display discordant behaviors (e.g., rotating with different sets of cues or remapping) in the same condition. In addition, on average, CA3 place cells shift their firing locations (measured by the center of mass, or COM) backward over time when the animal encounters the changed environment for the first time, but not after that first experience. However, CA1 displays an opposite pattern, in which place cells exhibit the backward COM-shift only from the second day of experience, but not on the first day. Here, we examined the relationship between the environment-representing behavior (i.e., rotation vs. remapping) and the COM-shift of place fields in CA1 and CA3. Both in CA1 and CA3, the backward (as well as forward) COM-shift phenomena occurred regardless of the rotating versus remapping of the place cell. The differential, daily time course of the onset/offset of backward COM-shift in the cue-altered environment in CA1 and CA3 (on day 1 in CA1 and from day 2 onward in CA3) stems from different population dynamics between the subfields. The results suggest that heterogeneous, complex plasticity mechanisms underlie the environment-representating behavior (i.e., rotate/remap) and the COM-shifting behavior of the place cell.
Resumo:
Background. Infant colic is a common condition that is thought to put infants at risk for Shaken Baby Syndrome, a particularly devastating form of child abuse. However, little research has been done on techniques parents can use to deal with infant colic. This pilot study was conducted to assess the equipment that will be used in a randomized control trial that will compare the results for two different techniques that parents can use to reduce crying in infants with colic. ^ Methods. A total of 11 healthy infants, between one and five months of age, were recruited into this pilot study. All infants had a dosimeter, actiwatch and maternal log placed into the home and a subset of infants (N=3) were also recorded by a video camera. The equipment recorded between 6pm and 6am for at least two and up to five nights. The maternal log and video log were compared with one another to determine if the maternal log provides an accurate representation of the infant's night-time activities (i.e. sleep, awake, crying, feeding). The maternal log was then compared to the dosimeter and actiwatch data to determine if the dosimeter/actiwatch accurately reproduce the maternal log. ^ Results. Data from 10 infants were included in the analyses. The maternal log and video log were in full or partial agreement 90% of the time. When comparing events noted by the mother, the maternal log and dosimeter data were in agreement 84% of the time, and the maternal log and actiwatch data were in agreement 87% of the time. In combination, the dosimeter and/or actiwatch data agreed with the maternal log 90% of the time. ^ Conclusions. Our preliminary analyses of these data suggest the dosimeter and actiwatch will be useful tool for defining infant sleep patterns relative to the maternal log. However further analysis will be required to develop threshold values that can be used to objectively define events in the proposed RCT. Such analyses will need to integrate data from multiple dosimeters and deal with the shifting baselines observed for both the dosimeter and actiwatch.^