7 resultados para threshold detector
em DigitalCommons@The Texas Medical Center
Resumo:
We seek to determine the relationship between threshold and suprathreshold perception for position offset and stereoscopic depth perception under conditions that elevate their respective thresholds. Two threshold-elevating conditions were used: (1) increasing the interline gap and (2) dioptric blur. Although increasing the interline gap increases position (Vernier) offset and stereoscopic disparity thresholds substantially, the perception of suprathreshold position offset and stereoscopic depth remains unchanged. Perception of suprathreshold position offset also remains unchanged when the Vernier threshold is elevated by dioptric blur. We show that such normalization of suprathreshold position offset can be attributed to the topographical-map-based encoding of position. On the other hand, dioptric blur increases the stereoscopic disparity thresholds and reduces the perceived suprathreshold stereoscopic depth, which can be accounted for by a disparity-computation model in which the activities of absolute disparity encoders are multiplied by a Gaussian weighting function that is centered on the horopter. Overall, the statement "equal suprathreshold perception occurs in threshold-elevated and unelevated conditions when the stimuli are equally above their corresponding thresholds" describes the results better than the statement "suprathreshold stimuli are perceived as equal when they are equal multiples of their respective threshold values."
Resumo:
A detailed microdosimetric characterization of the M. D. Anderson 42 MeV (p,Be) fast neutron beam was performed using the techniques of microdosimetry and a 1/2 inch diameter Rossi proportional counter. These measurements were performed at 5, 15, and 30 cm depths on the central axis, 3 cm inside, and 3 cm outside the field edge for 10 $\times$ 10 and 20 $\times$ 20 cm field sizes. Spectra were also measured at 5 and 15 cm depth on central axis for a 6 $\times$ 6 cm field size. Continuous slowing down approximation calculations were performed to model the nuclear processes that occur in the fast neutron beam. Irradiation of the CR-39 was performed using a tandem electrostatic accelerator for protons of 10, 6, and 3 MeV and alpha particles of 15, 10, and 7 MeV incident energy on target at angles of incidence from 0 to 85 degrees. The critical angle as well as track etch rate and normal incidence diameter versus linear energy transfer (LET) were obtained from these measurements. The bulk etch rate was also calculated from these measurements. Dose response of the material was studied, and the angular distribution of charged particles created by the fast neutron beam was measured with CR-39. The efficiency of CR-39 was calculated versus that of the Rossi chamber, and an algorithm was devised for derivation of LET spectra from the major and minor axis dimensions of the observed tracks. The CR-39 was irradiated in the same positions as the Rossi chamber, and the derived spectra were compared directly. ^
Resumo:
Many phase II clinical studies in oncology use two-stage frequentist design such as Simon's optimal design. However, they have a common logistical problem regarding the patient accrual at the interim. Strictly speaking, patient accrual at the end of the first stage may have to be suspended until all patients have events, success or failure. For example, when the study endpoint is six-month progression free survival, patient accrual has to be stopped until all outcomes from stage I is observed. However, study investigators may have concern when accrual is suspended after the first stage due to the loss of accrual momentum during this hiatus. We propose a two-stage phase II design that resolves the patient accrual problem due to an interim analysis, and it can be used as an alternative way to frequentist two-stage phase II studies in oncology. ^
Resumo:
Objective. In 2009, the International Expert Committee recommended the use of HbA1c test for diagnosis of diabetes. Although it has been recommended for the diagnosis of diabetes, its precise test performance among Mexican Americans is uncertain. A strong “gold standard” would rely on repeated blood glucose measurement on different days, which is the recommended method for diagnosing diabetes in clinical practice. Our objective was to assess test performance of HbA1c in detecting diabetes and pre-diabetes against repeated fasting blood glucose measurement for the Mexican American population living in United States-Mexico border. Moreover, we wanted to find out a specific and precise threshold value of HbA1c for Diabetes Mellitus (DM) and pre-diabetes for this high-risk population which might assist in better diagnosis and better management of patient diabetes. ^ Research design and methods. We used CCHC dataset for our study. In 2004, the Cameron County Hispanic Cohort (CCHC), now numbering 2,574, was established drawn from randomly selected households on the basis of 2000 Census tract data. The CCHC study randomly selected a subset of people (aged 18-64 years) in CCHC cohort households to determine the influence of SES on diabetes and obesity. Among the participants in Cohort-2000, 67.15% are female; all are Hispanic. ^ Individuals were defined as having diabetes mellitus (Fasting plasma glucose [FPG] ≥ 126 mg/dL or pre-diabetes (100 ≤ FPG < 126 mg/dL). HbA1c test performance was evaluated using receiver operator characteristic (ROC) curves. Moreover, change-point models were used to determine HbA1c thresholds compatible with FPG thresholds for diabetes and pre-diabetes. ^ Results. When assessing Fasting Plasma Glucose (FPG) is used to detect diabetes, the sensitivity and specificity of HbA1c≥ 6.5% was 75% and 87% respectively (area under the curve 0.895). Additionally, when assessing FPG to detect pre-diabetes, the sensitivity and specificity of HbA1c≥ 6.0% (ADA recommended threshold) was 18% and 90% respectively. The sensitivity and specificity of HbA1c≥ 5.7% (International Expert Committee recommended threshold) for detecting pre-diabetes was 31% and 78% respectively. ROC analyses suggest HbA1c as a sound predictor of diabetes mellitus (area under the curve 0.895) but a poorer predictor for pre-diabetes (area under the curve 0.632). ^ Conclusions. Our data support the current recommendations for use of HbA1c in the diagnosis of diabetes for the Mexican American population as it has shown reasonable sensitivity, specificity and accuracy against repeated FPG measures. However, use of HbA1c may be premature for detecting pre-diabetes in this specific population because of the poor sensitivity with FPG. It might be the case that HbA1c is differentiating the cases more effectively who are at risk of developing diabetes. Following these pre-diabetic individuals for a longer-term for the detection of incident diabetes may lead to more confirmatory result.^
Resumo:
High-resolution, small-bore PET systems suffer from a tradeoff between system sensitivity, and image quality degradation. In these systems long crystals allow mispositioning of the line of response due to parallax error and this mispositioning causes resolution blurring, but long crystals are necessary for high system sensitivity. One means to allow long crystals without introducing parallax errors is to determine the depth of interaction (DOI) of the gamma ray interaction within the detector module. While DOI has been investigated previously, newly available solid state photomultipliers (SSPMs) well-suited to PET applications and allow new modules for investigation. Depth of interaction in full modules is a relatively new field, and so even if high performance DOI capable modules were available, the appropriate means to characterize and calibrate the modules are not. This work presents an investigation of DOI capable arrays and techniques for characterizing and calibrating those modules. The methods introduced here accurately and reliably characterize and calibrate energy, timing, and event interaction positioning. Additionally presented is a characterization of the spatial resolution of DOI capable modules and a measurement of DOI effects for different angles between detector modules. These arrays have been built into a prototype PET system that delivers better than 2.0 mm resolution with a single-sided-stopping-power in excess of 95% for 511 keV g's. The noise properties of SSPMs scale with the active area of the detector face, and so the best signal-to-noise ratio is possible with parallel readout of each SSPM photodetector pixel rather than multiplexing signals together. This work additionally investigates several algorithms for improving timing performance using timing information from multiple SSPM pixels when light is distributed among several photodetectors.