2 resultados para thinning

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over 50% of sporadic tumors in humans have a p53 mutation highlighting its importance as a tumor suppressor. Considering additional mutations in other genes involved in p53 pathways, every tumor probably has mutant p53 or impaired p53-mediated functions. In response to a variety of cellular and genotoxic stresses, p53, mainly through its transcriptional activity, induces pathways involved in apoptosis and growth arrest. In these circumstances and under normal situations, p53 must be tightly regulated. Mdm2 is an important regulator of p53. Mdm2 inhibits p53 function by binding and blocking its transactivation domain. In addition, Mdm2 helps target p53 for degradation through its E3 ligase activity. Mdm2 null mice are embryonic lethal due to apoptosis in the blastocysts. However, a p53 null background rescues this lethality demonstrating the importance of the p53-Mdm2 interaction, particularly during development. The lethality of the Mdm2 null mouse prior to implantation limits the ability to investigate the role of Mdm2 in regulating p53 in a temporal and tissue specific manner. Does p53 need to be regulated in all tissues throughout the life of a mouse? Does Mdm2 always have to regulate it? To address these questions, we created a conditional Mdm2 allele. The conditional allele, Mdm2FM, in the presence of Cre recombinase results in the deletion of exons 5 and 6 of Mdm2 (most of the p53 binding domain) and represents a null allele. ^ The Mdm2FM allele was crossed with a heart muscle specific Cre expressing mouse (α-myosin heavy chain promoter driven Cre) to ask whether Mdm2 acts as a negative regulator of p53 in the heart. The heart is the most prominent organ early in embryogenesis and is shaped by cell death and proliferation. p53 does not appear to be active in the heart in response to some types of stress, so it remained to be determined if it has to be regulated in normal heart development. Loss of Mdm2 in the heart results in heart defects as early as E9.5. Loss of Mdm2 results in stabilized p53 and apoptosis. This apoptosis leads to a thinning of the myocardial wall particularly in the ventricles and abnormal ventricular structure. Eventually the abnormal heart fails resulting in lethality by E13.5. The embryonic lethality is rescued in a p53 null background. Thus, Mdm2 is important in regulating p53 in the development of the heart. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proliferative role of E2F has been under investigation for several years. However, while it is known that E2F1 and E2F4 play a part in development and differentiation, research has not been centered on determining the exact functions these E2Fs play in brain development, given there high expression levels throughout embryogenesis. A GFAP-E2F1 mouse model directing human E2F1 transgene expression to glial cells, such as ependymal cells, was used in the present study in combination with an E2F4 mutant mouse model. Interestingly, 20% of tgE2F1; E2F4 null mice developed a phenotype consisting of domed head, hunched posture, seizures, tremors, hyperactivity or hypeactivity, dysnea, and low body weight. These mice died during the first three weeks of severe hydrocephalus. Similarly, tgE2F1; E2F4 heterozygous mice also develop severe hydrocephalus, although this occurs at 6 weeks at a 2% frequency. Pathological examination of the brains of those animals uncovered enlarged cerebral ventricles with marked thinning of the cerebral cortices, confirming the diagnosis of three-ventricle hydrocephalus, and the absence of tumors. Careful examination of the aqueduct shows an excess of proliferating cells that may cause a blockage of CSF. Of significance, 44% of ependymal cells in hydrocephalic tgE2F1;E2F4-/- mouse brains were positive for BrdU incorporation. Studies determining the molecular rationale for the hydrocephalic phenotype suggest proliferative ependymal cells may not be exclusively related to dysregulated cell cycle in conjuction with E2F activity. Due in part to the deficiency of E2F4 in this mouse model, we find that differentiation of these ependymal cells is not complete and instead undergoes maturation arrest. This suggestion is confirmed by the expression of genes found in neural stem cells or precursor cell populations, in the ependymal cell region of tgE2F1; E2F4-/-. Therefore, from this study, we conclude that dysregulated E2F1 expression in combination with deficient E2F4 expression results in an undifferentiated ependymal cell population that is hyperproliferative in the ventricular system causing an impediment of CSF circulation. It is further concluded that normal E2F1 and E2F4 expression in brain development is crucial for the proper formation and function of the ventricular system.^