3 resultados para temporal difference learning

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parents of premature infants often receive infant cardiopulmonary resuscitation (CPR) training prior to discharge from the hospital, but one study showed that 27.5% of parents could not demonstrate adequate CPR skills after completing an instructor-led class. We hypothesized that parents who viewed an instructional video on infant CPR before attending the class would perform better on a standardized skills test than parents who attended the class with no preparation. Parents randomized to the intervention (video) group viewed the video within 48 hours of the CPR class. Parents in the control group attended the class with no special preparation. All parents completed the CPR skills checklist test, usually within 7 days after class and before the infant's hospital discharge. The test rated subjects' skills in the areas of assessment, ventilation, and chest compressions; each section was rated as good, fair, or fail. In this pass/fail test, students had to be rated good or fair on all three sections to pass. All 10 subjects in the video group passed the test versus only 9 of 13 in the control group, but this difference was not significant (P = 0.08). However, 8 of 10 (80%) subjects in the video group were rated as good on all three sections, versus only 3 of 13 (18.7%) in the control group, and this was a significant difference (P = 0.012). We conclude that preparation of students using an instructional video prior to infant CPR class is associated with improvement in skills performance as measured by a standardized skills test. Video preparation is relatively inexpensive, eliminates the barrier of reading ability for preparation, and can be done at the convenience of the parent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to represent time is an essential component of cognition but its neural basis is unknown. Although extensively studied both behaviorally and electrophysiologically, a general theoretical framework describing the elementary neural mechanisms used by the brain to learn temporal representations is lacking. It is commonly believed that the underlying cellular mechanisms reside in high order cortical regions but recent studies show sustained neural activity in primary sensory cortices that can represent the timing of expected reward. Here, we show that local cortical networks can learn temporal representations through a simple framework predicated on reward dependent expression of synaptic plasticity. We assert that temporal representations are stored in the lateral synaptic connections between neurons and demonstrate that reward-modulated plasticity is sufficient to learn these representations. We implement our model numerically to explain reward-time learning in the primary visual cortex (V1), demonstrate experimental support, and suggest additional experimentally verifiable predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The notion that changes in synaptic efficacy underlie learning and memory processes is now widely accepted even if definitive proof of the synaptic plasticity and memory hypothesis is still lacking. When learning occurs, patterns of neural activity representing the occurrence of events cause changes in the strength of synaptic connections within the brain. Reactivation of these altered connections constitutes the experience of memory for these events and for other events with which they may be associated. These statements summarize a long-standing theory of memory formation that we refer to as the synaptic plasticity and memory hypothesis. Since activity-dependent synaptic plasticity is induced at appropriate synapses during memory formation, and is both necessary and sufficient for the information storage, we can speculate that a methodological study of the synapse will help us understand the mechanism of learning. Random events underlie a wide range of biological processes as diverse as genetic drift and molecular diffusion, regulation of gene expression and neural network function. Additionally spatial variability may be important especially in systems with nonlinear behavior. Since synapse is a complex biological system we expect that stochasticity as well as spatial gradients of different enzymes may be significant for induction of plasticity. ^ In that study we address the question "how important spatial and temporal aspects of synaptic plasticity may be". We developed methods to justify our basic assumptions and examined the main sources of variability of calcium dynamics. Among them, a physiological method to estimate the number of postsynaptic receptors as well as a hybrid algorithm for simulating postsynaptic calcium dynamics. Additionally we studied how synaptic geometry may enhance any possible spatial gradient of calcium dynamics and how that spatial variability affect plasticity curves. Finally, we explored the potential of structural synaptic plasticity to provide a metaplasticity mechanism specific for the synapse. ^