3 resultados para temperature regulation

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The murine sarcoma virus MuSVts110 exhibits an alternative RNA splicing pattern. Like other simple retroviruses, MuSVts110 pre-mRNA splicing is balanced to allow the production of both spliced and unspliced RNA during the replicative cycle. In addition to balance, MuSVts110 RNA splicing exhibits a unique growth-temperature restriction to splicing; temperatures below 33$\sp\circ$C are permissive for splicing while temperatures of 37$\sp\circ$C or above are non-permissive. Previous work has established that this thermosensitive splicing phenotype is mediated in cis by viral transcript features. Here we show that at least three sequence elements regulate the MuSVts110 splicing phenotype. First, the MuSVts110 branchpoint (BP) and poly-pyrimidine tract (PPT) were found to be determinants of overall splicing efficiency. Wild-type MuSVts110 possesses a weak BP and PPT adjacent to the 3$\sp\prime$ splice site. Introduction of a strong BP caused MuSVts110 splicing to proceed to virtual completion in vivo, thus losing any vestige of balance or thermosensitivity. In in vitro splicing extracts, the strong BP overcame a blockade to wt MuSVts110 splicing at both the first and second catalytic steps. Weakening the consensus nature of the strong BP allowed the recovery of thermosensitive splicing in vivo, and reinstated the blockades to splicing in vitro, arguing that a suboptimal BP is an unusual manifestation of the proportional splicing pattern of retroviruses. The PPT is essential for accurate recognition of the BP sequence by the splicing machinery. Lengthening the PPT of MuSVts110 from 9 to 19 consecutive pyrimidines increased the overall efficiency of splicing in vivo dramatically, but was less effective than the strong BP in overriding the restriction on splicing imposed by high growth temperatures. Finally, decreasing gradually the overall size of the intron unexpectedly reduced splicing efficiency at growth temperatures permissive for splicing, suggesting that non-conserved sequences within the intron of MuSVts110 participate in splicing regulation as well. Taken together, these results suggest a mechanism of control in which MuSVts110 splicing is modulated by the entire intron, but principally by suboptimal signals at the splice acceptor site. Furthermore, this retroviral system provides a powerful genetic method for selection and analysis of mutations that affect splicing. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells infected with the conditionally defective MuSVts110 mutant of Moloney murine sarcoma virus are transformed at 33$\sp\circ$C but appear morphologically normal at 39$\sp\circ$C. The molecular basis for this phenotype is as follows: MuSVts110 contains a 1487 nucleotide central deletion that has truncated the 3$\sp\prime$ end to the gag gene and the 5$\sp\prime$ end of the mos gene. The resulting gag-mos junction is out-of-frame and the v-mos protein is not expressed. At 33$\sp\circ$C or lower, a splicing event is activated such that a 431 base intron is removed to realign the gag and mos gene in-frame, allowing the expression of a transforming protein P85$\sp{gag-mos}$. Temperature-dependent splicing appeared to be an intrinsic property of MuSVts110 transcripts and not a general feature of pre-mRNA splicing in 6m2 cells since splicing activity of a heterologous transcript in the same cells did not vary with temperature. The possibility that the splice event was not temperature-sensitive, but that the accumulation of spliced transcript at the lower growth temperatures was due to its selective thermolability was ruled out as stability studies revealed that the relative turnover rates of the unspliced and spliced MuSVts110 transcripts were not affected by temperature.^ The consensus sequences containing the splice sites activated in the MuSVts110 mutant (5$\sp\prime$ gag and 3$\sp\prime$ mos) are present, but not utilized, in wild-type MuSV-124. To test the hypothesis that it was the reduction of the 1919 base intervening sequence in MuSV-124 to 431 bases in MuSVts110 which activated splicing, the identical 1487 base deletion was introduced into cloned wild-type MuSV-124 DNA to create the MuSVts110 equivalent, ts32.^ To examine conditions permissive for splicing, we assayed splice site activation in a series of MuSV-124 "intron-modification" mutants. Data suggest that splicing in wild-type MuSV-124 may be blocked due to the lack of a proximal branchpoint sequence, but can be activated by those intron mutations which reposition a branch site closer to the 3$\sp\prime$ splice site. (Abstract shortened with permission of author.) ^