8 resultados para susceptibility testing
em DigitalCommons@The Texas Medical Center
Resumo:
This prospective cohort study estimated how antibacterial resistance affected the time until clinical response. Relative rates of improvement and cure were estimated by proportional-hazards regression for 391 patients with culture-confirmed bacterial keratitis who had the ciprofloxacin minimal inhibitory concentration (MIC) measured of the principal corneal isolate and who were treated with ciprofloxacin 0.3% solution or ointment. After adjusting for age and hypopyon status and stratifying by ulcer size, clinic, and ciprofloxacin formulation, the summary rate of clinical improvement with ciprofloxacin therapy was reduced by 42% (95% confidence limits [CL], 3%, 65%) among patients whose corneal isolate's ciprofloxacin MIC exceeded 1.0 μg/mL compared to those with more sensitive isolates. The summary rate of resolution to improvement and cure was reduced by 36% (95% CL, 11%, 53%) among corneal infections having a higher ciprofloxacin MIC. Rate ratios were modified by the size of the presenting corneal ulceration; for ulcer diameters of 4 mm or less and of more than 4 mm, improvement rate ratios were 0.56 (95% CL, 0.31, 1.02) and 0.65 (95% CL, 0.23, 1.80), respectively; resolution rate ratios were 0.63 (95% CL, 0.44, 0.91) and 0.67 (95% CL, 0.32, 1.39), respectively. Sensitivity analysis showed that the summary improvement rate ratio could be maximally overestimated by 24% (95% CL, −29%, 114%) because of informative censoring or by 33% (95% CL, −21%, 126%) from loss to follow up. Based on reported corneal pharmacokinetics of topical ciprofloxacin, the probability of clinical improvement was 90% or more if the ratio of the achievable corneal ciprofloxacin concentration to the corneal isolate's ciprofloxacin MIC was above 8 or the ratio of the area under the 24-hour corneal concentration curve to the ciprofloxacin MIC was greater than 151. This study suggests that corneal infections by bacteria having a higher ciprofloxacin MIC respond more slowly to ciprofloxacin treatment than those with a lower MIC. While the rate of clinical resolution is affected by patient age and clinical severity, antimicrobial susceptibility testing of corneal cultures can indicate the relative effectiveness of antibacterial therapy. A pharmacodynamic approach to treating bacterial keratitis offers the prospect of optimal antimicrobial selection and modification. ^
Resumo:
BACKGROUND: Methicillin-resistant Staphylococus aureus (MRSA) is an important nosocomial and community-associated (CA) pathogen. Recently, a variant of the MRSA USA300 clone emerged and disseminated in South America, causing important clinical problems. METHODS: S. aureus isolates were prospectively collected (2006-2008) from 32 tertiary hospitals in Colombia, Ecuador, Peru, and Venezuela. MRSA isolates were subjected to antimicrobial susceptibility testing and pulsed-field gel electrophoresis and were categorized as health care-associated (HA)-like or CA-like clones on the basis of genotypic characteristics and detection of genes encoding Panton-Valentine leukocidin and staphylococcal cassette chromosome (SCC) mec IV. In addition, multilocus sequence typing of representative isolates of each major CA-MRSA pulsotype was performed, and the presence of USA300-associated toxins and the arcA gene was investigated for all isolates categorized as CA-MRSA. RESULTS: A total of 1570 S. aureus were included; 651 were MRSA (41%)--with the highest rate of MRSA isolation in Peru (62%) and the lowest in Venezuela (26%)--and 71%, 27%, and 2% were classified as HA-like, CA-like, and non-CA/HA-like clones, respectively. Only 9 MRSA isolates were confirmed to have reduced susceptibility to glycopeptides (glycopeptide-intermediate S. aureus phenotype). The most common pulsotype (designated ComA) among the CA-like MRSA strains was found in 96% of isolates, with the majority (81%) having a < or =6-band difference with the USA300-0114 strain. Representative isolates of this clone were sequence type 8; however, unlike the USA300-0114 strain, they harbored a different SCCmec IV subtype and lacked arcA (an indicator of the arginine catabolic mobile element). CONCLUSION: A variant CA-MRSA USA300 clone has become established in South America and, in some countries, is endemic in hospital settings.
Resumo:
Enterococcus faecium has emerged as an important nosocomial pathogen worldwide, and this trend has been associated with the dissemination of a genetic lineage designated clonal cluster 17 (CC17). Enterococcal isolates were collected prospectively (2006 to 2008) from 32 hospitals in Colombia, Ecuador, Perú, and Venezuela and subjected to antimicrobial susceptibility testing. Genotyping was performed with all vancomycin-resistant E. faecium (VREfm) isolates by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. All VREfm isolates were evaluated for the presence of 16 putative virulence genes (14 fms genes, the esp gene of E. faecium [espEfm], and the hyl gene of E. faecium [hylEfm]) and plasmids carrying the fms20-fms21 (pilA), hylEfm, and vanA genes. Of 723 enterococcal isolates recovered, E. faecalis was the most common (78%). Vancomycin resistance was detected in 6% of the isolates (74% of which were E. faecium). Eleven distinct PFGE types were found among the VREfm isolates, with most belonging to sequence types 412 and 18. The ebpAEfm-ebpBEfm-ebpCEfm (pilB) and fms11-fms19-fms16 clusters were detected in all VREfm isolates from the region, whereas espEfm and hylEfm were detected in 69% and 23% of the isolates, respectively. The fms20-fms21 (pilA) cluster, which encodes a putative pilus-like protein, was found on plasmids from almost all VREfm isolates and was sometimes found to coexist with hylEfm and the vanA gene cluster. The population genetics of VREfm in South America appear to resemble those of such strains in the United States in the early years of the CC17 epidemic. The overwhelming presence of plasmids encoding putative virulence factors and vanA genes suggests that E. faecium from the CC17 genogroup may disseminate in the region in the coming years.
Resumo:
In order to identify optimal therapy for children with bacterial pneumonia, Pakistan's ARI Program, in collaboration with the National Institute of Health (NIH), Islamabad, undertook a national surveillance of antimicrobial resistance in S. pneumoniae and H. influenzae. The project was carried out at selected urban and peripheral sites in 6 different regions of Pakistan, in 1991–92. Nasopharyngeal (NP) specimens and blood cultures were obtained from children with pneumonia diagnosed in the outpatient clinic of participating facilities. Organisms were isolated by local hospital laboratories and sent to NIH for confirmation, serotyping and antimicrobial susceptibility testing. Following were the aims of the study (i) to determine the antimicrobial resistance patterns of S. pneumoniae and H. influenzae in children aged 2–59 months; (ii) to determine the ability of selected laboratories to identify and effectively transport isolates of S. pneumoniae and H. influenzae cultured from nasopharyngeal and blood specimens; (iii) to validate the comparability of resistance patterns for nasopharyngeal and blood isolates of S. pneumoniae and H. influenzae from children with pneumonia; and (iv) to examine the effect of drug resistance and laboratory error on the cost of effectively treating children with ARI. ^ A total of 1293 children with ARI were included in the study: 969 (75%) from urban areas and 324 (25%) from rural parts of the country. Of 1293, there were 786 (61%) male and 507 (39%) female children. The resistance rate of S. pneumoniae to various antibiotics among the urban children with ARI was: TMP/SMX (62%); chloramphenicol (23%); penicillin (5%); tetracycline (16%); and ampicillin/amoxicillin (0%). The rates of resistance of H. influenzae were higher than S. pneumoniae: TMP/SMX (85%); chloramphenicol (62%); penicillin (59%); ampicillin/amoxicillin (46%); and tetracycline (100%). There were similar rates of resistance to each antimicrobial agent among isolates from the rural children. ^ Of a total 614 specimens that were tested for antimicrobial susceptibility, 432 (70.4%) were resistant to TMP/SMX and 93 (15.2%) were resistant to antimicrobial agents other than TMP/SMX viz. ampicillin/amoxicillin, chloramphenicol, penicillin, and tetracycline. ^ The sensitivity and positive predictive value of peripheral laboratories for H. influenzae were 99% and 65%, respectively. Similarly, the sensitivity and positive predictive value of peripheral laboratory tests compared to gold standard i.e. NIH laboratory, for S. pneumoniae were 99% and 54%, respectively. ^ The sensitivity and positive predictive value of nasopharyngeal specimens compared to blood cultures (gold standard), isolated by the peripheral laboratories, for H. influenzae were 88% and 11%, and for S. pneumoniae 92% and 39%, respectively. (Abstract shortened by UMI.)^
Resumo:
Clostridium difficile is the leading definable cause of nosocomial diarrhea worldwide due to its virulence, multi-drug resistance, spore-forming ability, and environmental persistence. The incidence of C. difficile infection (CDI) has been increasing exponentially in the last decade. Virulent strains of C. difficile produce either toxin A and/or toxin B, which are essential for the pathogenesis of this bacterium. Current methods for diagnosing CDI are mostly qualitative tests that detect the bacterium, the toxins, or the toxin genes. These methods do not differentiate virulent C. difficile strains that produce active toxins from non-virulent strains that do not produce toxins or produce inactive toxins. Based on the knowledge that C. difficile toxins A and B cleave a substrate that is stereochemically similar to the native substrate of the toxins, uridine diphosphoglucose, a quantitative, cost-efficient assay, the Cdifftox activity assay, was developed to measure C. difficile toxin activity. The concept behind the activity assay was modified to develop a novel, rapid, sensitive, and specific assay for C. difficile toxins in the form of a selective and differential agar plate culture medium, the Cdifftox Plate assay (CDPA). This assay combines in a single step the specific identification of C. difficile strains and the detection of active toxin(s). The CDPA was determined to be extremely accurate (99.8% effective) at detecting toxin-producing strains based on the analysis of 528 C. difficile isolates selected from 50 tissue culture cytotoxicity assay-positive clinical stool samples. This new assay advances and improves the culture methodology in that only C. difficile strains will grow on this medium and virulent strains producing active toxins can be differentiated from non-virulent strains. This new method reduces the time and effort required to isolate and confirm toxin-producing C. difficile strains and provides a clinical isolate for antibiotic susceptibility testing and strain typing. The Cdifftox activity assay was used to screen for inhibitors of toxin activity. Physiological levels of the common human conjugated bile salt, taurocholate, was found to inhibit toxin A and B in vitro activities. When co-incubated ex vivo with purified toxin B, taurocholate protected Caco-2 colonic epithelial cells from the damaging effects of the toxin. Furthermore, using a caspase-3 detection assay, taurocholate reduced the extent of toxin B-induced Caco-2 cell apoptosis. These results suggest that bile salts can be effective in protecting the gut epithelium from C. difficile toxin damage, thus, the delivery of physiologic amounts of taurocholate to the colon, where it is normally in low concentration, could be useful in CDI treatment. These findings may help to explain why bile rich small intestine is spared damage in CDI, while the bile salt poor colon is vulnerable in CDI. Toxin synthesis in C. difficile occurs during the stationary phase, but little is known about the regulation of these toxins. It was hypothesized that C. difficile toxin synthesis is regulated by a quorum sensing mechanism. Two lines of evidence supported this hypothesis. First, a small (KDa), diffusible, heat-stable toxin-inducing activity accumulates in the medium of high-density C. difficile cells. This conditioned medium when incubated with low-density log-phase cells causes them to produce toxin early (2-4 hrs instead of 12-16 hrs) and at elevated levels when compared with cells grown in fresh medium. These data suggested that C. difficile cells extracellularly release an inducing molecule during growth that is able to activate toxin synthesis prematurely and demonstrates for the first time that toxin synthesis in C. difficile is regulated by quorum signaling. Second, this toxin-inducing activity was partially purified from high-density stationary-phase culture supernatant fluid by HPLC and confirmed to induce early toxin synthesis, even in C. difficile virulent strains that over-produce the toxins. Mass spectrometry analysis of the purified toxin-inducing fraction from HPLC revealed a cyclic compound with a mass of 655.8 Da. It is anticipated that identification of this toxin-inducing compound will advance our understanding of the mechanism involved in the quorum-dependent regulation of C. difficile toxin synthesis. This finding should lead to the development of even more sensitive tests to diagnose CDI and may lead to the discovery of promising novel therapeutic targets that could be harnessed for the treatment C. difficile infections.
Resumo:
Study Objective: Identify the most frequent risk factors of Community Acquired-MRSA (CA-MRSA) Skin and Soft-tissue Infections (SSTIs) using a case series of patients and characterize them by age, race/ethnicity, gender, abscess location, druguse and intravenous drug-user (IVDU), underlying medical conditions, homelessness, treatment resistance, sepsis, those whose last healthcare visit was within the last 12 months, and describe the susceptibility pattern from this central Texas population that have come into the University Medical Center Brackenridge (UMCB) Emergency Department (ED). ^ Methods: This study was a retrospective case-series medical record review involving a convenience sample of patients in 2007 from an urban public hospital's ED in Texas that had a SSTI that tested positive for MRSA. All positive MRSA cultures underwent susceptibility testing to determine antibiotic resistance. The demographic and clinical variables that were independently associated with MRSA were determined by univariate and multivariate analysis using logistic regression to calculate odds ratios (OR), 95% confidence intervals, and significance (p≤ 0.05). ^ Results: In 2007, there were 857 positive MRSA cultures. The demographics were: males 60% and females 40%, with the average age of 36.2 (std. dev. =13) the study population consisted of non-Hispanic white (42%), Hispanics (38%), and non-Hispanic black (18.8%). Possible risk factors addressed included using recreational drugs (not including IVDU) (27%) homelessness (13%), diabetes status (12.6%) or having an infectious disease, and IVDU (10%). The most frequent abscess location was the leg (26.6%), followed by the arm and torso (both 13.7%). Eighty-three percent of patients had one prominent susceptibility pattern that had a susceptibility rate for the following antibiotics: trimethoprim/sulfamethoxazole (TMP-SMX) and vancomycin had 100%, gentamicin 99%, clindamycin 96%, tetracycline 96%, and erythromycin 56%. ^ Conclusion: The ED is becoming an important area for disease transmission between the sterile hospital environment and the outside environment. As always, it is important to further research in the ED in an effort to better understand MRSA transmission and antibiotic resistance, as well as to keep surveillance for the introduction of new opportunistic pathogens into the population. ^
Resumo:
Neural tube defects (NTDs) are the most common severely disabling birth defects in the United States, with a frequency of approximately 1–2 of every 1,000 births. This text includes the identification and evaluation of candidate susceptibility genes that confer risk for the development of neural tube defects (NTDs). The project focused on isolated meningomyelocele, also termed spina bifida (SB). ^ Spina bifida is a complex disease with multifactorial inheritance, therefore the subject population (consisting of North American Caucasians and Hispanics of Mexicali-American descent) was composed of 459 simplex SB families who were tested for genetic associations utilizing the transmission disequilibrium test (TDT), a nonparametric linkage technique. Three categories of candidate genes were studied, including (1) human equivalents of genes determined in mouse models to cause NTDs, (2) HOX and PAX genes, and (3) the MTHFR gene involved in the metabolic pathway of folate. ^ The C677T variant of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene was the first mutation in this gene to be implicated as a risk factor for NTDs. Our evaluation of the MTHFR gene provides evidence that maternal C677T homozygosity is a risk factor for upper level spina bifida defects in Hispanics [OR = 2.3, P = 0.02]. This observed risk factor is of great importance due to the high prevalence of this homozygous genotype in the Hispanic population. Additionally, maternal C677T/A1298C compound heterozygosity is a risk factor for upper level spina bifida defects in non-Hispanic whites [OR = 3.6, P = 0.03]. ^ For TDT analysis, our total population of 1128 subjects were genotyped for 54 markers from within and/or flanking the 20 candidate genes/gene regions of interest. Significant TDT findings were obtained for 3 of the 54 analyzed markers: d20s101 flanking the PAX1 gene (P = 0.019), d1s228 within the PAX7 gene (P = 0.011), and d2s110 within the PAX8 gene (P = 0.013). These results were followed-up by testing the genes directly for mutations utilizing single-strand conformational analysis (SSCA) and direct sequencing. Multiple variations were detected in each of these PAX genes; however, these variations were not passed from parent to child in phase with the positively transmitted alleles. Therefore, these variations do not contribute to the susceptibility of spina bifida, but rather are previously unreported single nucleotide polymorphisms. ^
Resumo:
Up to 10% of all breast and ovarian cancers are attributable to mutations in cancer susceptibility genes. Clinical genetic testing for deleterious gene mutations that predispose to hereditary breast and ovarian cancer (HBOC) syndrome is available. Mutation carriers may benefit from following high-risk guidelines for cancer prevention and early detection; however, few studies have reported the uptake of clinical genetic testing for HBOC. This study identified predictors of HBOC genetic testing uptake among a case series of 268 women who underwent genetic counseling at The University of Texas M. D. Anderson Cancer Center from October, 1996, through July, 2000. Women completed a baseline questionnaire that measured psychosocial and demographic variables. Additional medical characteristics were obtained from the medical charts. Logistic regression modeling identified predictors of participation in HBOC genetic testing. Psychological variables were hypothesized to be the strongest predictors of testing uptake—in particular, one's readiness (intention) to have testing. Testing uptake among all women in this study was 37% (n = 99). Contrary to the hypotheses, one's actual risk of carrying a BRCA1 or BRCA2 gene mutation was the strongest predictor of testing participation (OR = 15.37, CI = 5.15, 45.86). Other predictors included religious background, greater readiness to have testing, knowledge about HBOC and genetic testing, not having female children, and adherence to breast self-exam. Among the subgroup of women who were at ≥10% risk of carrying a mutation, 51% (n = 90) had genetic testing. Consistent with the hypotheses, predictors of testing participation in the high-risk subgroup included greater readiness to have testing, knowledge, and greater self-efficacy regarding one's ability to cope with test results. Women with CES-D scores ≥16, indicating the presence of depressive symptoms, were less likely to have genetic testing. Results indicate that among women with a wide range of risk for HBOC, actual risk of carrying an HBOC-predisposing mutation may be the strongest predictor of their decision to have genetic testing. Psychological variables (e.g., distress and self-efficacy) may influence testing participation only among women at highest risk of carrying a mutation, for whom genetic testing is most likely to be informative. ^