2 resultados para summation

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptide nucleic acids (PNA) are mimics of nucleic acids with a peptidic backbone. Duplexes and triplexes formed between PNA and DNA or RNA possess remarkable thermal stability, they are resistant to nuclease cleavage and can better discriminate mismatches. Understanding the mechanism for the tight binding between PNA and oligonucleotides is important for the design and development of better PNA-based drugs.^ We have performed molecular dynamics (MD) simulations of 8-mer PNA/DNA duplex and two analogous duplexes with chiral modification of PNA strand (D- or L-Alanine modification). MD simulations were performed with explicit water and Na$\sp{+}$ counter ions. The 1.5-ns simulations were carried out with AMBER using periodic boundary and particle mesh Ewald summation. The point charges for PNA monomers were derived from fitting electrostatic potentials, obtained from ab initio calculation, to atomic centers using RESP. Derived charges reveal significantly altered charge distribution on the PNA bases and predict the Watson-Crick H-bonds involving PNA to be stronger. Results from NMR studies investigating H-bond interactions between DNA-DNA and DNA-PNA base pairs in non-polar environment are consistent with this prediction. MD simulations demonstrated that the PNA strand is more flexible than the DNA strand in the same duplex. That this flexibility might be important for the duplex stability is tested by introducing modification into the PNA backbones. Results from MD simulation revealed dramatically altered structures for the modified PNA-DNA duplexes. Consistent with previous NMR results, we also found no intrachain hydrogen bonds between O7$\sp\prime$ and N1$\sp\prime$ of the neighboring residues in our MD study. Our study reveals that in addition to the lack of charge repulsion, stronger Watson-Crick hydrogen bonds together with flexible backbone are important factors for the enhanced stability of the PNA-DNA duplex.^ In a related study, we have developed an application of Gly-Gly-His-(Gly)$\sb3$-PNA conjugate as an artificial nuclease. We were able to demonstrate cleavage of single stranded DNA at a single site upon Ni(II) binding to Gly-Gly-His tripeptide and activation of nuclease with monoperoxyphthalic acid. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiation therapy for patients with intact cervical cancer is frequently delivered using primary external beam radiation therapy (EBRT) followed by two fractions of intracavitary brachytherapy (ICBT). Although the tumor is the primary radiation target, controlling microscopic disease in the lymph nodes is just as critical to patient treatment outcome. In patients where gross lymphadenopathy is discovered, an extra EBRT boost course is delivered between the two ICBT fractions. Since the nodal boost is an addendum to primary EBRT and ICBT, the prescription and delivery must be performed considering previously delivered dose. This project aims to address the major issues of this complex process for the purpose of improving treatment accuracy while increasing dose sparing to the surrounding normal tissues. Because external beam boosts to involved lymph nodes are given prior to the completion of ICBT, assumptions must be made about dose to positive lymph nodes from future implants. The first aim of this project was to quantify differences in nodal dose contribution between independent ICBT fractions. We retrospectively evaluated differences in the ICBT dose contribution to positive pelvic nodes for ten patients who had previously received external beam nodal boost. Our results indicate that the mean dose to the pelvic nodes differed by up to 1.9 Gy between independent ICBT fractions. The second aim is to develop and validate a volumetric method for summing dose of the normal tissues during prescription of nodal boost. The traditional method of dose summation uses the maximum point dose from each modality, which often only represents the worst case scenario. However, the worst case is often an exaggeration when highly conformal therapy methods such as intensity modulated radiation therapy (IMRT) are used. We used deformable image registration algorithms to volumetrically sum dose for the bladder and rectum and created a voxel-by-voxel validation method. The mean error in deformable image registration results of all voxels within the bladder and rectum were 5 and 6 mm, respectively. Finally, the third aim explored the potential use of proton therapy to reduce normal tissue dose. A major physical advantage of protons over photons is that protons stop after delivering dose in the tumor. Although theoretically superior to photons, proton beams are more sensitive to uncertainties caused by interfractional anatomical variations, and must be accounted for during treatment planning to ensure complete target coverage. We have demonstrated a systematic approach to determine population-based anatomical margin requirements for proton therapy. The observed optimal treatment angles for common iliac nodes were 90° (left lateral) and 180° (posterior-anterior [PA]) with additional 0.8 cm and 0.9 cm margins, respectively. For external iliac nodes, lateral and PA beams required additional 0.4 cm and 0.9 cm margins, respectively. Through this project, we have provided radiation oncologists with additional information about potential differences in nodal dose between independent ICBT insertions and volumetric total dose distribution in the bladder and rectum. We have also determined the margins needed for safe delivery of proton therapy when delivering nodal boosts to patients with cervical cancer.