4 resultados para sudden cardiac arrest

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extremes of electrocardiographic QT interval are associated with increased risk for sudden cardiac death (SCD); thus, identification and characterization of genetic variants that modulate QT interval may elucidate the underlying etiology of SCD. Previous studies have revealed an association between a common genetic variant in NOS1AP and QT interval in populations of European ancestry, but this finding has not been extended to other ethnic populations. We sought to characterize the effects of NOS1AP genetic variants on QT interval in the multi-ethnic population-based Dallas Heart Study (DHS, n = 3,072). The SNP most strongly associated with QT interval in previous samples of European ancestry, rs16847548, was the most strongly associated in White (P = 0.005) and Black (P = 3.6 x 10(-5)) participants, with the same direction of effect in Hispanics (P = 0.17), and further showed a significant SNP x sex-interaction (P = 0.03). A second SNP, rs16856785, uncorrelated with rs16847548, was also associated with QT interval in Blacks (P = 0.01), with qualitatively similar results in Whites and Hispanics. In a previously genotyped cohort of 14,107 White individuals drawn from the combined Atherosclerotic Risk in Communities (ARIC) and Cardiovascular Health Study (CHS) cohorts, we validated both the second locus at rs16856785 (P = 7.63 x 10(-8)), as well as the sex-interaction with rs16847548 (P = 8.68 x 10(-6)). These data extend the association of genetic variants in NOS1AP with QT interval to a Black population, with similar trends, though not statistically significant at P<0.05, in Hispanics. In addition, we identify a strong sex-interaction and the presence of a second independent site within NOS1AP associated with the QT interval. These results highlight the consistent and complex role of NOS1AP genetic variants in modulating QT interval.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to determine if race/ethnicity was a significant risk factor for hospital mortality in children following congenital heart surgery in a contemporary sample of newborns with congenital heart disease. Unlike previous studies that utilized administrative databases, this study utilized clinical data collected at the point of care to examine racial/ethnic outcome differences in the context of the patients' clinical condition and their overall perioperative experience. A retrospective cohort design was used. The study sample consisted of 316 newborns (<31 days of age) who underwent congenital heart surgery between January 2007 through December 2009. A multivariate logistic regression model was used to determine the impact of race/ethnicity, insurance status, presence of a spatial anomaly, prenatal diagnosis, postoperative sepsis, cardiac arrest, respiratory failure, unplanned reoperation, and total length of stay in the intensive care unit on outcomes following congenital heart surgery in newborns. The study findings showed that the strongest predictors of hospital mortality following congenital heart surgery in this cohort were postoperative cardiac arrest, postoperative respiratory failure, having a spatial anomaly, and total ICU LOS. Race/ethnicity and insurance status were not significant risk factors. The institution where this study was conducted is designated as a center of excellence for congenital heart disease. These centers have state-of-the-art facilities, extensive experience in caring for children with congenital heart disease, and superior outcomes. This study suggests that optimal care delivery for newborns requiring congenital heart surgery at a center of excellence portends exceptional outcomes and this benefit is conferred upon the entire patient population despite the race/ethnicity of the patients. From a public health and health services view, this study also contributes to the overall body of knowledge on racial/ethnic disparities in children with congenital heart defects and puts forward the possibility of a relationship between quality of care and racial/ethnic disparities. Further study is required to examine the impact of race/ethnicity on the long-term outcomes of these children as they encounter the disparate components of the health care delivery system. There is also opportunity to study the role of race/ethnicity on the hospital morbidity in these patients considering current expectations for hospital survival are very high, and much of the current focus for quality improvement rests in minimizing the development of patient morbidities.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Documented risks of physical activity include reduced bone mineral density at high activity volume, and sudden cardiac death among adults and adolescents. Further illumination of these risks is needed to inform future public health guidelines. The present research seeks to 1) quantify the association between physical activity and bone mineral density (BMD) across a broad range of activity volume, 2) assess the utility of an existing pre-screening questionnaire among US adults, and 3) determine if pre-screening risk stratification by questionnaire predicts referral to physician among Texas adolescents. ^ Among 9,468 adults 20 years of age or older in the National Health and Nutrition Examination Survey (NHANES) 2007-2010, linear regression analyses revealed generally higher BMD at the lumbar spine and proximal femur with greater reported activity volume. Only lumbar BMD in women was unassociated with activity volume. Among men, BMD was similar at activity beyond four times the minimum volume recommended in the Physical Activity Guidelines. These results suggest that the range of activity reported by US adults is not associated with low BMD at either site. ^ The American Heart Association / American College of Sports Medicine Preparticipation Questionnaire (AAPQ) was applied to 6,661 adults 40 years of age or older from NHANES 2001-2004 by using NHANES responses to complete AAPQ items. Following AAPQ referral criteria, 95.5% of women and 93.5% of men would be referred to a physician before exercise initiation, suggesting little utility for the AAPQ among adults aged 40 years or older. Unnecessary referral before exercise initiation may present a barrier to exercise adoption and may strain an already stressed healthcare infrastructure. ^ Among 3181 athletes in the Texas Adolescent Athlete Heart Screening Registry, 55.2% of boys and 62.2% of girls were classified as high-risk based on questionnaire answers. Using sex-stratified contingency table analyses, risk categories were not significantly associated with referral to physician based on electrocardiogram or echocardiogram, nor were they associated with confirmed diagnoses on follow-up. Additional research is needed to identify which symptoms are most closely related to sudden cardiac death, and determine the best methods for rapid and reliable assessment. ^ In conclusion, this research suggests that the volume of activity reported by US adults is not associated with low BMD at two clinically relevant sites, casts doubts on the utility of two existing cardiac screening tools, and raises concern about barriers to activity erected through ineffective screening. These findings augment existing research in this area that may inform revisions to the Physical Activity Guidelines regarding risk mitigation.^