5 resultados para subchondral bone osteoblasts

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular mechanisms controlling bone extracellular matrix (ECM) deposition by differentiated osteoblasts in postnatal life, called hereafter bone formation, are unknown. This contrasts with the growing knowledge about the genetic control of osteoblast differentiation during embryonic development. Cbfa1, a transcriptional activator of osteoblast differentiation during embryonic development, is also expressed in differentiated osteoblasts postnatally. The perinatal lethality occurring in Cbfa1-deficient mice has prevented so far the study of its function after birth. To determine if Cbfa1 plays a role during bone formation we generated transgenic mice overexpressing Cbfa1 DNA-binding domain (DeltaCbfa1) in differentiated osteoblasts only postnatally. DeltaCbfa1 has a higher affinity for DNA than Cbfa1 itself, has no transcriptional activity on its own, and can act in a dominant-negative manner in DNA cotransfection assays. DeltaCbfa1-expressing mice have a normal skeleton at birth but develop an osteopenic phenotype thereafter. Dynamic histomorphometric studies show that this phenotype is caused by a major decrease in the bone formation rate in the face of a normal number of osteoblasts thus indicating that once osteoblasts are differentiated Cbfa1 regulates their function. Molecular analyses reveal that the expression of the genes expressed in osteoblasts and encoding bone ECM proteins is nearly abolished in transgenic mice, and ex vivo assays demonstrated that DeltaCbfa1-expressing osteoblasts were less active than wild-type osteoblasts. We also show that Cbfa1 regulates positively the activity of its own promoter, which has the highest affinity Cbfa1-binding sites characterized. This study demonstrates that beyond its differentiation function Cbfa1 is the first transcriptional activator of bone formation identified to date and illustrates that developmentally important genes control physiological processes postnatally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone remodeling is controlled by the osteoclast, which resorbs bone, and the osteoblast, which synthesizes and secretes proteins that are eventually mineralized into bone. Ca$\sp{2+}$ homeostasis and signaling contribute to the function of nearly all cell types, and understanding both in the osteoblast is of importance given its secretory properties and interaction with osteoclasts. This study was undertaken to identify and investigate the physiology of the Ca$\sp{2+}$ signaling mechanisms present in osteoblasts. The Ca$\sp{2+}$ pumps, stores and channels present in osteoblasts were studied. RT-PCR cloning revealed that osteoblast-like cells express PMCA1b, an alternatively spliced transcript of the plasma membrane Ca$\sp{2+}$-ATPase. The PMCA1b isoform contains a consensus phosphorylation site for cAMP-dependent protein kinase A and a modified calmodulin binding domain. The regulation of osteoblast function by agents that act via cAMP-mediated pathways may involve alterations in the activity of the plasma membrane Ca$\sp{2+}$-ATPase.^ Calcium release from intracellular stores is a signaling mechanism used universally by cells responding to hormones and growth factors, and the compartmentalization and regulated release of calcium is cell-type specific. Fura-2 was employed to monitor intracellular Ca$\sp{2+}$. Thapsigargin and 2,5,-di-(tert-butyl)-1,4-benzohydroquinone (tBuHQ), two inhibitors of endoplasmic reticulum Ca$\sp{2+}$-ATPase activity, both emptied a single intracellular calcium pool which was released in response to either ATP or thrombin, identifying it as the inositol 1,4,5-trisphosphate-sensitive calcium store. The Ca$\sp{2+}$ storage system present in osteoblasts is typical of a non-excitable cell type, despite these cells sharing characteristics of excitable cells such as voltage-sensitive Ca$\sp{2+}$ channels (VSCCs).^ VSCCs are important cell surface regulators of membrane permeability to Ca$\sp{2+}$. In non-excitable cells VSCCs act as cellular transducers of stimulus-secretion coupling, activators of intracellular proteins, and in control of cell growth and differentiation. Functional VSCCs have been shown to exist in osteoblasts, however, no molecular cloning has been reported. To obtain information concerning the molecular identity of the osteoblastic VSCC, we used an RT-PCR regional amplification approach. Sequencing of the products indicated that osteoblasts express at least two isoforms of the L-type VSCC, $\alpha 1\sb{\rm C-a}$ and the $\alpha 1\sb{\rm C-d}$, which share regions of identity to the $\alpha \sb{\rm 1C}$ isoform first identified in cardiac myocytes. The ability of $1,25(\rm OH)\sb2D\sb3$ and structural analogs to modulate expression of Ca$\sp{2+}$ channel mRNA was then investigated. Cells were cultured for 48 hr in the presence of $1,25(\rm OH)\sb2D\sb3$ or vitamin D analogs, and the levels of mRNA encoding VSCC $\alpha \sb{\rm 1C}$ were quantitated using a competitive RT-PCR assay. It was found that $1,25(\rm OH)\sb2D\sb3$ and analog BT reduced steady state levels of $\alpha \sb{\rm 1C}$ mRNA. Conversely, analog AT did not alter steady state levels of Ca$\sp{2+}$ channel mRNA. Since it has been shown previously that analog BT, but not AT, binds and activates the nuclear vitamin D receptor, these findings suggest that the down regulation of channel mRNA involves the nuclear receptor for $1,25(\rm OH)\sb2D\sb3$. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1,25-dihydroxyvitamin D3 [1,25(OH)2D 3] exerts pleiotropic effects on osteoblasts via both long-term nuclear receptor-mediated and rapid membrane-initiated pathways during bone remodeling and mineral homeostasis. This study explored the membrane transducers that mediate rapid effects of 1,25(OH)2D3 on osteoblasts, including sphingomyelinase (SMase) and L-type voltage sensitive calcium channels (VSCCs). ^ It was previously demonstrated that 1,25(OH)2D3 stimulates transmembrane influx of Ca2+ through VSCCs in ROS 17/2.8 osteoblasts, however the molecular identity of 1,25(OH)2D 3-regulated VSCC has not been known. In this study, on the basis of in vitro tests of three unique ribozymes specifically cleaving a1C mRNA, I transfected ROS 17/2.8 cells with vectors coding recombinant ribozyme modified with U1 snRNA structure, and successfully selected stable clonal cells in which the expression of a1C was strikingly reduced. Ca2+ influx studies in these cells compared to control transfectants showed selective attenuation of depolarization- and 1,25(OH)2D3-regulated Ca2+ responses. These results allow us to conclude that the cardiac ( a1C ) subtype of the L-type VSCC is the major membrane transducer of Ca 2+ influx in osteoblasts. ^ I also demonstrated that 1,25(OH)2D3 induces a rapid hydrolysis of membrane sphingomyelin (SM) in ROS 17/2.8 cells, with the concomitant generation of ceramide, detectable at 15 minute, and maximal at 1 hour after addition. Sphingosine, sphingosine-1-phosphate (SPP) and sphingosylphosphorylcholine (SPC), downstream products of SM hydrolysis, but not ceramide, elicit Ca 2+ release from intracellular stores. Considering ceramide, sphingosine, and SPP as second messengers modulating intracellular kinases or phosphatases, these findings implicate sphingolipid-signaling pathways in transducing rapid effects of 1,25(OH)2D3 on osteoblasts. In structure/function analyses of sphingolipid signaling, it was observed that psychosine elicits Ca2+ release from intracellular stores. This challenges the dogma that sphingosine phosphorylation permits mobilization of Ca2+ , because psychosine is a sphingosine analog galactosylated at 1-carbon, preventing phosphorylation at that site. Psychosine is the pathological metabolite found in patients with Krabbe's disease, suggesting that psychosine disrupts the physiological sphingolipid signaling by chronic release of Ca2+ from intracellular stores. ^ Slower SM turnover than Ca2+ influx through VSCCs in response to 1,25(OH)2D3 demonstrates ceramide does not mediate the 1,25(OH)2D3-induced Ca2+ signaling, a conclusion endorsed further by the failure of ceramide to induce Ca 2+ signaling. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteopontin (OPN) is a highly-phosphorylated extracellular matrix protein localized in bone, kidney, placenta, T-lymphocytes, macrophages, smooth muscle of the vascular system, milk, urine, and plasma. In ROS 17/2.8 osteoblast-like osteosarcoma cells, 1,25-dihydroxyvitamin D3 [1,25(OH)2D 3] regulates OPN at the transcriptional level resulting in increased steady state mRNA levels and increased production of OPN protein, maximal at 48 hours. Using ROS 17/2.8 cells as an osteoblast model, OPN was purified from culture medium after three hour treatments of either vehicle (ethanol) or 1,25(OH)2D3 via barium citrate precipitation followed by immunoaffinity chromatography. ^ Here, further evidence of regulation of OPN by 1,25(OH)2D 3 at the posttranslational level is presented. Prior to the up-regulation of OPN at the transcriptional level, 1,25(OH)2D3 induces a shift in OPN isoelectric point (pI) detected on two-dimensional gels from pI 4.6 to pI 5.1. Loading equal amounts of [32P]-labeled OPN recovered from ROS 17/2.8 cells exposed to 1,25(OH)2D3 or vehicle alone for three hours reveals that the shift from pI 4.6 to 5.1 is the result of reduced phosphorylation. Using structural analogs to 1,25(OH) 2D3, analog AT [25-(OH)-16-ene-23-yne-D3], which triggers Ca2+ influx through voltage sensitive Ca2+ channels but does not bind to the vitamin D receptor, mimicked the OPN pI shift while analog BT [1,25(OH)2-22-ene-24-cyclopropyl-D 3], which binds to the vitamin D receptor but does not allow Ca 2+ influx, did not. Inclusion of the Ca2+ channel blocker nifedipine also blocks the charge shift conversion of OPN. Further analysis of the signaling pathway initiated by 1,25(OH)2D3 reveals that inhibition of the cyclic 3′,5′ -adenosine monophosphate-dependent kinase, protein kinase A, or inhibition of the cyclic 3′,5′-guanine monophosphate-dependent kinase, protein kinase G, also prevents the charge shift conversion. ^ Isolation of OPN from rat femurs and tibiae provides evidence for the existence of these two OPN charge forms in vivo, evidenced by differential migration on isoelectric focusing gels and sodium dodecyl sulfate-polyacrylamide gels. Peptide sequencing of rat long bone fractions revealed the presence of a presumed dentin specific protein, dentin matrix protein-1 (DMP-1). Western blot analysis confirmed the existence of DMP-1 in these fractions. ^ Using the OPN charge forms in functional assays, it was determined that the charge forms have differential roles in both cell surface and mineralization functions. In cell attachment assays and Ca2+ influx assays using PC-3 prostate cancer cells, the pI 5.1 charge form of OPN was found to permit binding and increase intracellular Ca2+ concentrations of PC-3 cells. The increase in intracellular Ca2+ concentration was found to be integrin αvβ3-dependent. In mineralization assays, the pI 4.6 charge form of OPN promoted hydroxyapatite formation, while the pI 5.1 charge form had improved Ca2+ binding ability. ^ In conclusion, these findings suggest that 1,25(OH) 2D3 regulates OPN not only at the transcriptional level, but also plays a role in determination of the OPN phosphorylation state. The latter involves a short term (less than three hours) treatment and is associated with membrane-initiated Ca2+ influx. Functional assays utilizing the two OPN charge forms reveal the dependence of OPN post-translational state on its function. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteosarcoma, a malignant bone tumor, rapidly destroys the cortical bone. We demonstrated that mouse K7M2 osteosarcoma cells were deficient in osterix (osx), a zinc finger-containing transcription factor required for osteoblasts differentiation and bone formation. These cells formed lytic tumors when injected into the tibia. The destruction of bone is mediated by osteoclasts in osteosarcoma. The less expression of osterix with osteolytic phenotype was also observed in more tumor cell lines. Replacement of osterix in K7M2 cells suppressed lytic bone destruction, inhibited tumor growth in vitro and in vivo, and suppressed lung metastasis in vivo and the migration of K7M2 to lung conditioned medium in vitro. By contrast, inhibiting osterix by vector-based small interfering RNA (siRNA) in two cell lines (Dunn and DLM8) that expressed high levels of osterix converted osteoblastic phenotype to lytic. Recognizing and binding of Receptor Activator of NF-κB (RANK) on osteoclast precursors by its ligand RANKL is the key osteoclastogenic event. Increased RANKL results in more osteoclast activity. We investigated whether K7M2-mediated bone destruction was secondary to an effect on RANKL. The conditioned medium from K7M2 could upregulate RANKL in normal osteoblast MC3T3, which might lead to more osteoclast formation. By contrast, the conditioned medium from K7M2 cells transfected with osx-expressing plasmid did not upregulate RANKL. Furthermore, Interleukin-1alpha (IL-1α) was significantly suppressed following osx transfection. IL-1α increased RANKL expression in MC3T3 cells, suggesting that osx may control RANKL via a mechanism involving IL-1α. Using a luciferase reporter assay, we demonstrated that osx downregulated IL-1α through a transcription-mediated mechanism. Following suppression of osterix in Dunn and DLM8 cells led to enhanced IL-1α promoter activity and protein production. Site-directed mutagenesis and Chromatin immunoprecipitation (ChIP) indicated that osterix downregulated IL-1α through a Sp1-binding site on the IL-1α promoter. These data suggest that osterix is involved in the lytic phenotype of osteosarcoma and that this is mediated via transcriptional repression of IL-1α. ^