2 resultados para structural efficiency
em DigitalCommons@The Texas Medical Center
Resumo:
Hospitals, like all organizations, have both a mission and a finite supply of resources with which to accomplish that mission. Because the inventory of therapeutic drugs is among the more expensive resources needed by a hospital to achieve its mission, a conceptual model of structure plus process equals outcome posits that adequate emphasis should be placed on optimization of the organization's investment in this important structural resource to provide highest quality outcomes. Therefore emphasis should be placed on the optimization of pharmacy inventory because lowering the financial investment in drug inventory and associated costs increases productive efficiency, a key element of quality. ^ In this study, a post-intervention analysis of a hospital pharmacy inventory management technology implementation at The University of Texas M.D. Anderson Cancer Center was conducted to determine if an intervention which reduced a hospital's financial investment in pharmaceutical inventory provided an opportunity to incrementally optimize the organization's mix of structural resources thereby improving quality of care. The results suggest that hospital pharmacies currently lacking technology to support automated purchasing logistics and perpetual, real-time inventory management for drugs may achieve measurable benefits from the careful implementation of such technology, enabling the hospital to lower its investment in on-hand inventory and, potentially, to reduce overall purchasing expenditures. ^ The importance of these savings to the hospital and potentially to the patient should not be underestimated for their ability to generate funding for previously unfunded public health programs or in their ability to provide financial relief to patients in the form of lower drug costs given the current climate of escalating healthcare costs and tightening reimbursements.^
Resumo:
The multifunctional Ca$\sp{2+}$/calmodulin-dependent protein kinase II (CaM kinase) is a Ser/Thr directed protein kinase that participates in diverse Ca$\sp{2+}$ signaling pathways in neurons. The function of CaM kinase depends upon the ability of subunits to form oligomers and to interact with other proteins. Oligomerization is required for autophosphorylation which produces significant functional changes that include Ca$\sp{2+}$/calmodulin-independent activity and calmodulin trapping. Associations with other proteins localize CaM kinase to specific substrates and effectors which serves to optimize the efficiency and speed of signal transduction. In this thesis, we investigate the interactions that underlie the appropriate positioning of CaM kinase activity in cells. We demonstrate that the subcellular distribution of CaM kinase is dynamic in hippocampal slices exposed to anoxic/aglycemic insults and to high K$\sp{+}$-induced depolarization. We determine the localization of CaM kinase domains expressed in neurons and PC-12 cells and find that the C-terminal domain of the $\alpha$ subunit is necessary for localization to dendrites. Moreover, monomeric forms of the enzyme gain access to the nucleus. Attempts made to identify novel CaM kinase binding proteins using the yeast two-hybrid system resulted in the isolation of hundreds of positive clones. Those that have been sequenced are identical to CaM kinase isoforms. Finally, we report the discovery of specific regions within the C-terminal domain that are necessary and sufficient for subunit-subunit interactions. Differences between the $\alpha$ and $\beta$ isoforms were discovered that indicate unique structural requirements for oligomerization. A model for how CaM kinase subunits interact to form holoenzymes and how structural heterogeneity might influence CaM kinase function is presented. ^