5 resultados para streptococcus pneumoniae

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to identify optimal therapy for children with bacterial pneumonia, Pakistan's ARI Program, in collaboration with the National Institute of Health (NIH), Islamabad, undertook a national surveillance of antimicrobial resistance in S. pneumoniae and H. influenzae. The project was carried out at selected urban and peripheral sites in 6 different regions of Pakistan, in 1991–92. Nasopharyngeal (NP) specimens and blood cultures were obtained from children with pneumonia diagnosed in the outpatient clinic of participating facilities. Organisms were isolated by local hospital laboratories and sent to NIH for confirmation, serotyping and antimicrobial susceptibility testing. Following were the aims of the study (i) to determine the antimicrobial resistance patterns of S. pneumoniae and H. influenzae in children aged 2–59 months; (ii) to determine the ability of selected laboratories to identify and effectively transport isolates of S. pneumoniae and H. influenzae cultured from nasopharyngeal and blood specimens; (iii) to validate the comparability of resistance patterns for nasopharyngeal and blood isolates of S. pneumoniae and H. influenzae from children with pneumonia; and (iv) to examine the effect of drug resistance and laboratory error on the cost of effectively treating children with ARI. ^ A total of 1293 children with ARI were included in the study: 969 (75%) from urban areas and 324 (25%) from rural parts of the country. Of 1293, there were 786 (61%) male and 507 (39%) female children. The resistance rate of S. pneumoniae to various antibiotics among the urban children with ARI was: TMP/SMX (62%); chloramphenicol (23%); penicillin (5%); tetracycline (16%); and ampicillin/amoxicillin (0%). The rates of resistance of H. influenzae were higher than S. pneumoniae: TMP/SMX (85%); chloramphenicol (62%); penicillin (59%); ampicillin/amoxicillin (46%); and tetracycline (100%). There were similar rates of resistance to each antimicrobial agent among isolates from the rural children. ^ Of a total 614 specimens that were tested for antimicrobial susceptibility, 432 (70.4%) were resistant to TMP/SMX and 93 (15.2%) were resistant to antimicrobial agents other than TMP/SMX viz. ampicillin/amoxicillin, chloramphenicol, penicillin, and tetracycline. ^ The sensitivity and positive predictive value of peripheral laboratories for H. influenzae were 99% and 65%, respectively. Similarly, the sensitivity and positive predictive value of peripheral laboratory tests compared to gold standard i.e. NIH laboratory, for S. pneumoniae were 99% and 54%, respectively. ^ The sensitivity and positive predictive value of nasopharyngeal specimens compared to blood cultures (gold standard), isolated by the peripheral laboratories, for H. influenzae were 88% and 11%, and for S. pneumoniae 92% and 39%, respectively. (Abstract shortened by UMI.)^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The actinomycete Corynebacterium glutamicum grows as rod-shaped cells by zonal peptidoglycan synthesis at the cell poles. In this bacterium, experimental depletion of the polar DivIVA protein (DivIVA(Cg)) resulted in the inhibition of polar growth; consequently, these cells exhibited a coccoid morphology. This result demonstrated that DivIVA is required for cell elongation and the acquisition of a rod shape. DivIVA from Streptomyces or Mycobacterium localized to the cell poles of DivIVA(Cg)-depleted C. glutamicum and restored polar peptidoglycan synthesis, in contrast to DivIVA proteins from Bacillus subtilis or Streptococcus pneumoniae, which localized at the septum of C. glutamicum. This confirmed that DivIVAs from actinomycetes are involved in polarized cell growth. DivIVA(Cg) localized at the septum after cell wall synthesis had started and the nucleoids had already segregated, suggesting that in C. glutamicum DivIVA is not involved in cell division or chromosome segregation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. Although complete blood count (CBC) changes occur with the development of clinical sepsis in newborns, the CBC has not been reported to be a sensitive predictor of sepsis in asymptomatic full-term newborn infants, nor has it been reported to be related to risk factors for sepsis or clinical decisions. The objective of this study was to evaluate the relationship between the WBC/I:T (immature:total neutrophil) ratio and maternal group B streptococcal (GBS) risk factors (rupture of membranes ≥18 hours, maternal temperature ≥100.4°F, maternal age ≤20 years, previous infant with invasive GBS disease, maternal GBS bacteriuria, and black ethnicity); and to evaluate the relationship between the WBC/I:T ratios and providers' clinical decisions (observe versus repeat the CBC or complete sepsis evaluation) in the asymptomatic full-term newborn at risk for early-onset GBS sepsis. ^ Methods. Medical records of infants admitted to the well baby nursery at a tertiary care teaching hospital in Houston, TX between 1/1/99 and 12/31/00 whose gestational ages were ≥35 weeks; who had mothers with GBS positive or unknown culture status and inadequate intrapartum antibiotic prophylaxis; and who had screening CBCs performed in the first 30 hours of life because of GBS risk were reviewed (n = 412). Demographic information, maternal GBS risk factors, CBC results, clinical decisions, and rationales for clinical decisions were collected. ^ Results. With the exception of black ethnicity (p = .0000, odds ratio = 0.213), no statistically significant differences in risk factors between infants with normal and abnormal WBC counts or normal and abnormal I:T ratios were found. Infants with abnormal WBCs had a significantly higher likelihood of having a CBC repeated (p = 0.002 for WBC). Providers documented the CBC result in the rationale for clinical decisions in 62% of the cases. ^ Conclusion. The CBC results were not related to maternal risk factors for GBS except for ethnicity. Black infants had significantly lower WBC levels than infants of other ethnicities, although this difference was clinically insignificant. Infants with abnormal WBCs had a significantly higher likelihood of undergoing repeat CBCs but not sepsis evaluations. Provider rationale was difficult to evaluate due to insufficient documentation. The screening CBC result did not impact the clinicians' decisions to initiate sepsis evaluations in this population. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Group B Streptococcus (GBS) is a leading cause of life-threatening infection in neonates and young infants, pregnant women, and non-pregnant adults with underlying medical conditions. Immunization has theoretical potential to prevent significant morbidity and mortality from GBS disease. Alpha C protein (α C), found in 70% of non-type III capsule polysaccharide group B Streptococcus, elicits antibodies protective against α C-expressing strains in experimental animals and is an appealing carrier for a GBS conjugate vaccine. We determined whether natural exposure to α C elicits antibodies in women and if high maternal α C-specific serum antibody at delivery is associated with protection against neonatal disease. An ELISA was designed to measure α C-specific IgM and IgG in human sera. A case-control design (1:3 ratio) was used to match α C-expressing GBS colonized and non-colonized women by age and compare quantified serum α C-specific IgM and IgG. Sera also were analyzed from bacteremic neonates and their mothers and from women with invasive GBS disease. Antibody concentrations were compared using t-tests on log-transformed data. Geometric mean concentrations of α C-specific IgM and IgG were similar in sera from 58 α C strain colonized and 174 age-matched non-colonized women (IgG 245 and 313 ng/ml; IgM 257 and 229 ng/ml, respectively). Delivery sera from mothers of 42 neonates with GBS α C sepsis had similar concentrations of α C-specific IgM (245 ng/ml) and IgG (371 ng/ml), but acute sera from 13 women with invasive α C-expressing GBS infection had significantly higher concentrations (IgM 383 and IgG 476 ng/ml [p=0.036 and 0.038, respectively]). Convalescent sera from 5 of these women 16-49 days later had high α C-specific IgM and IgG concentrations (1355 and 4173 ng/ml, respectively). In vitro killing of α C-expressing GBS correlated with total α C-specific antibody concentration. Invasive disease but not colonization elicits α C-specific IgM and IgG in adults. Whether α C-specific IgG induced by vaccine would protect against disease in neonates merits further investigation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of group G streptococci in cats and evaluation of the recovered organisms as potential human pathogens was investigated. Throat swabs were obtained from 89 cats (47 males and 42 females) and vaginal swabs from 39 female cats. Eighty-three of the examined cats were housed in individual cages at a University Animal Care Facility. Six cats, 2 mature males, 2 mature females and 2 young females were family pets in a rural area. Beta-hemolytic streptococci were recovered from 33 (37%) of the 89 cat throats cultured, and 27 (30.3%) were identified as group G. More males (34%) than females (24%) had throat cultures positive for group G. From the 39 vaginal cultures examined, 24 (61.5%) contained beta-hemolytic streptococci and 23 (58.9%) were identified as group G streptococci. Streptococci were not recovered from the vaginal cultures of the 5 females under 6 months of age.^ Thirty one group G streptococci isolated from cats were compared with 37 isolates of group G obtained from humans (health status or site of origin unknown). More group G cat isolates (81%) produced deoxyribonuclease (DNase) than did the human isolates (36%). The proportion of cat throat and vaginal isolates producing DNase was the same. Production of nicotinamide adenine dinucleotide glycohydrolase (NADase) by group G isolates of human origin was 70%, cat throat isolates 53% and cat vaginal isolates 37%. The Serum Opacity Factor was present in 73% of the cat throat isolates of group G, 43.7% of the cat vaginal isolates and 58.6% of the human isolates. Possession of an anti-phagocytic factor (M protein like substance) demonstrated by the ability to multiply in fresh human blood was greater in the group G from cat throats (46.7%) than from cat vagina (37.5%) or from the human isolates (13.5%). Many of the biochemical characteristics of the group G streptococci of cat origin were more similar to the biochemical characteristics of group A streptococci, than to the characteristics of group G of human origin. The group G streptococci, found in a large number of cats, could be potential human pathogens, as their physiological and biological characteristics are very similar to those of group A, a known human pathogen. ^