6 resultados para statistical analysis, multiple access interference, MC-CDMA systems

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the multiple case-study was to determine how hospital subsystems (such as physician monitoring and credentialing; quality assurance; risk management; and peer review) were supporting the monitoring of physicians? Three large metropolitan hospitals in Texas were studied and designated as hospitals #1, #2, and #3. Realizing that hospital subsystems are a unique entity and part of a larger system, conclusions were made on the premises of a quality control system, in relation to the tools of government (particularly the Health Care Quality Improvement Act (HCQIA)), and in relation to itself as a tool of a hospital.^ Three major analytical assessments were performed. First, the subsystems were analyzed as to their "completeness"; secondly, the subsystems were analyzed for "performance"; and thirdly, the subsystems were analyzed in reference to the interaction of completeness and performance.^ The physician credentialing and monitoring and the peer review subsystems as quality control systems were most complete, efficient, and effective in hospitals #1 and #3. The HCQIA did not seem to be an influencing factor in the completeness of the subsystem in hospital #1. The quality assurance and risk management subsystem in hospital #2 was not representative of completeness and performance and the HCQIA was not an influencing factor in the completeness of the Q.A. or R.M. systems in any hospital. The efficiency (computerization) of the physician credentialing, quality assurance and peer review subsystems in hospitals #1 and #3 seemed to contribute to their effectiveness (system-wide effect).^ The results indicated that the more complete, effective, and efficient subsystems were characterized by (1) all defined activities being met, (2) the HCQIA being an influencing factor, (3) a decentralized administrative structure, (4) computerization an important element, and (5) staff was sophisticated in subsystem operations. However, other variables were identified which deserve further research as to their effect on completeness and performance of subsystems. They include (1) medical staff affiliations, (2) system funding levels, (3) the system's administrative structure, and (4) the physician staff "cultural" characteristics. Perhaps by understanding other influencing factors, health care administrators may plan subsystems that will be compatible with legislative requirements and administrative objectives. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Birth defects are the leading cause of infant mortality in the United States and are a major cause of lifetime disability. However, efforts to understand their causes have been hampered by a lack of population-specific data. During 1990–2004, 22 state legislatures responded to this need by proposing birth defects surveillance legislation (BDSL). The contrast between these states and those that did not pass BDSL provides an opportunity to better understand conditions associated with US public health policy diffusion. ^ This study identifies key state-specific determinants that predict: (1) the introduction of birth defects surveillance legislation (BDSL) onto states' formal legislative agenda, and (2) the successful adoption of these laws. Secondary aims were to interpret these findings in a theoretically sound framework and to incorporate evidence from three analytical approaches. ^ The study begins with a comparative case study of Texas and Oregon (states with divergent BDSL outcomes), including a review of historical documentation and content analysis of key informant interviews. After selecting and operationalizing explanatory variables suggested by the case study, Qualitative Comparative Analysis (QCA) was applied to publically available data to describe important patterns of variation among 37 states. Results from logistic regression were compared to determine whether the two methods produced consistent findings. ^ Themes emerging from the comparative case study included differing budgetary conditions and the significance of relationships within policy issue networks. However, the QCA and statistical analysis pointed to the importance of political parties and contrasting societal contexts. Notably, state policies that allow greater access to citizen-driven ballot initiatives were consistently associated with lower likelihood of introducing BDSL. ^ Methodologically, these results indicate that a case study approach, while important for eliciting valuable context-specific detail, may fail to detect the influence of overarching, systemic variables, such as party competition. However, QCA and statistical analyses were limited by a lack of existing data to operationalize policy issue networks, and thus may have downplayed the impact of personal interactions. ^ This study contributes to the field of health policy studies in three ways. First, it emphasizes the importance of collegial and consistent relationships among policy issue network members. Second, it calls attention to political party systems in predicting policy outcomes. Finally, a novel approach to interpreting state data in a theoretically significant manner (QCA) has been demonstrated.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to investigate the effects of predictor variable correlations and patterns of missingness with dichotomous and/or continuous data in small samples when missing data is multiply imputed. Missing data of predictor variables is multiply imputed under three different multivariate models: the multivariate normal model for continuous data, the multinomial model for dichotomous data and the general location model for mixed dichotomous and continuous data. Subsequent to the multiple imputation process, Type I error rates of the regression coefficients obtained with logistic regression analysis are estimated under various conditions of correlation structure, sample size, type of data and patterns of missing data. The distributional properties of average mean, variance and correlations among the predictor variables are assessed after the multiple imputation process. ^ For continuous predictor data under the multivariate normal model, Type I error rates are generally within the nominal values with samples of size n = 100. Smaller samples of size n = 50 resulted in more conservative estimates (i.e., lower than the nominal value). Correlation and variance estimates of the original data are retained after multiple imputation with less than 50% missing continuous predictor data. For dichotomous predictor data under the multinomial model, Type I error rates are generally conservative, which in part is due to the sparseness of the data. The correlation structure for the predictor variables is not well retained on multiply-imputed data from small samples with more than 50% missing data with this model. For mixed continuous and dichotomous predictor data, the results are similar to those found under the multivariate normal model for continuous data and under the multinomial model for dichotomous data. With all data types, a fully-observed variable included with variables subject to missingness in the multiple imputation process and subsequent statistical analysis provided liberal (larger than nominal values) Type I error rates under a specific pattern of missing data. It is suggested that future studies focus on the effects of multiple imputation in multivariate settings with more realistic data characteristics and a variety of multivariate analyses, assessing both Type I error and power. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Several studies have reported a positive association of body mass index (BMI) with multiple myeloma; however, the period of adulthood where BMI is most important remains unclear. In addition, it is well known that body fat is associated with both sex-steroid hormone storage and with increasing insulin levels; therefore, it was hypothesized that the association between obesity and multiple myeloma may be attributed to increased aromatization of androgen in adipose tissue. Objective. The overall objective of this case-control study was to determine whether multiple myeloma cases had higher BMI and greater adult weight gain relative to healthy controls. In addition, we tested the hypothesis that hormone replacement therapy use among women will further increase the association between BMI and risk of multiple myeloma. This study used data from a pilot case-control study at M.D. Anderson Cancer Center (MDACC), entitled Etiology of multiple myeloma, directed by Dr. Sara Strom and Dr. Sergio Giralt. Methods. The pilot study recruited a total of 122 cases of histopathologically confirmed multiple myeloma from MDACC. Controls (n=183) were selected from a database of random digit dialing controls accrued in the Department of Epidemiology at MDACC and were frequency matched to the cases on age (±5 years), gender, and race/ethnicity. Demographic and risk factor information were obtained from all participants who completed a self-administered questionnaire. Items included in the questionnaire include demographic information, height and weight at age 25, 40 and current/diagnosis, medical history, family history of cancer, smoking and alcohol use. Statistical analysis. Initial descriptive analysis included Student's t-test and Pearson's chi-squared tests. Odds ratios and 95% confidence intervals were calculated to quantify the association between the variables of interest and multiple myeloma. A multivariable model will be developed using unconditional logistic regression. Results. MM cases were 1.79 times (95% CI=0.99-3.32) more likely to have been overweight or obese (BMI > 25 kg/m2) at age 25 relative to healthy controls after controlling for age, gender, race/ethnicty, education and family history of cancer. Being overweight or obese at age 40 was not significantly associated with mutliple myeloma risk (OR=1.42, 95% CI=0.86-2.34) nor was being overweight or obses at diagnosis (OR=1.43, 95% CI=0.78, 2.63). We observed a statistically significant 2-fold increased odds of multiple myeloma in individuals who gained more than 4.7 kg during between 25 and 40 years (OR=1.97, 95% CI=1.15-3.39). When assessing HRT as a modifier of the BMI and multiple myeloma association among women (N=123), no association between obesity and MM status was observed among women who have never used HRT (OR=0.60, 95% CI=0.23-1.61; n=73). Yet among women who have ever used HRT (n=50), being overweight or obese was associated with an increase in MM risk (OR=2. 93, 95% CI=0.81-10.6) after adjusting for age; however, the association was not statistically significant. Significance. This study provides further evidence that increased BMI increases the risk of multiple myeloma. Furthermore, among women, HRT use may modify risk of disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three articles that comprise this dissertation describe how small area estimation and geographic information systems (GIS) technologies can be integrated to provide useful information about the number of uninsured and where they are located. Comprehensive data about the numbers and characteristics of the uninsured are typically only available from surveys. Utilization and administrative data are poor proxies from which to develop this information. Those who cannot access services are unlikely to be fully captured, either by health care provider utilization data or by state and local administrative data. In the absence of direct measures, a well-developed estimation of the local uninsured count or rate can prove valuable when assessing the unmet health service needs of this population. However, the fact that these are “estimates” increases the chances that results will be rejected or, at best, treated with suspicion. The visual impact and spatial analysis capabilities afforded by geographic information systems (GIS) technology can strengthen the likelihood of acceptance of area estimates by those most likely to benefit from the information, including health planners and policy makers. ^ The first article describes how uninsured estimates are currently being performed in the Houston metropolitan region. It details the synthetic model used to calculate numbers and percentages of uninsured, and how the resulting estimates are integrated into a GIS. The second article compares the estimation method of the first article with one currently used by the Texas State Data Center to estimate numbers of uninsured for all Texas counties. Estimates are developed for census tracts in Harris County, using both models with the same data sets. The results are statistically compared. The third article describes a new, revised synthetic method that is being tested to provide uninsured estimates at sub-county levels for eight counties in the Houston metropolitan area. It is being designed to replicate the same categorical results provided by a current U.S. Census Bureau estimation method. The estimates calculated by this revised model are compared to the most recent U.S. Census Bureau estimates, using the same areas and population categories. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed longitudinal designs are important study designs for many areas of medical research. Mixed longitudinal studies have several advantages over cross-sectional or pure longitudinal studies, including shorter study completion time and ability to separate time and age effects, thus are an attractive choice. Statistical methodology used in general longitudinal studies has been rapidly developing within the last few decades. Common approaches for statistical modeling in studies with mixed longitudinal designs have been the linear mixed-effects model incorporating an age or time effect. The general linear mixed-effects model is considered an appropriate choice to analyze repeated measurements data in longitudinal studies. However, common use of linear mixed-effects model on mixed longitudinal studies often incorporates age as the only random-effect but fails to take into consideration the cohort effect in conducting statistical inferences on age-related trajectories of outcome measurements. We believe special attention should be paid to cohort effects when analyzing data in mixed longitudinal designs with multiple overlapping cohorts. Thus, this has become an important statistical issue to address. ^ This research aims to address statistical issues related to mixed longitudinal studies. The proposed study examined the existing statistical analysis methods for the mixed longitudinal designs and developed an alternative analytic method to incorporate effects from multiple overlapping cohorts as well as from different aged subjects. The proposed study used simulation to evaluate the performance of the proposed analytic method by comparing it with the commonly-used model. Finally, the study applied the proposed analytic method to the data collected by an existing study Project HeartBeat!, which had been evaluated using traditional analytic techniques. Project HeartBeat! is a longitudinal study of cardiovascular disease (CVD) risk factors in childhood and adolescence using a mixed longitudinal design. The proposed model was used to evaluate four blood lipids adjusting for age, gender, race/ethnicity, and endocrine hormones. The result of this dissertation suggest the proposed analytic model could be a more flexible and reliable choice than the traditional model in terms of fitting data to provide more accurate estimates in mixed longitudinal studies. Conceptually, the proposed model described in this study has useful features, including consideration of effects from multiple overlapping cohorts, and is an attractive approach for analyzing data in mixed longitudinal design studies.^