4 resultados para statistical analysis
em DigitalCommons@The Texas Medical Center
Resumo:
Most statistical analysis, theory and practice, is concerned with static models; models with a proposed set of parameters whose values are fixed across observational units. Static models implicitly assume that the quantified relationships remain the same across the design space of the data. While this is reasonable under many circumstances this can be a dangerous assumption when dealing with sequentially ordered data. The mere passage of time always brings fresh considerations and the interrelationships among parameters, or subsets of parameters, may need to be continually revised. ^ When data are gathered sequentially dynamic interim monitoring may be useful as new subject-specific parameters are introduced with each new observational unit. Sequential imputation via dynamic hierarchical models is an efficient strategy for handling missing data and analyzing longitudinal studies. Dynamic conditional independence models offers a flexible framework that exploits the Bayesian updating scheme for capturing the evolution of both the population and individual effects over time. While static models often describe aggregate information well they often do not reflect conflicts in the information at the individual level. Dynamic models prove advantageous over static models in capturing both individual and aggregate trends. Computations for such models can be carried out via the Gibbs sampler. An application using a small sample repeated measures normally distributed growth curve data is presented. ^
Resumo:
Background. Research into methods for recovery from fatigue due to exercise is a popular topic among sport medicine, kinesiology and physical therapy. However, both the quantity and quality of studies and a clear solution of recovery are lacking. An analysis of the statistical methods in the existing literature of performance recovery can enhance the quality of research and provide some guidance for future studies. Methods: A literature review was performed using SCOPUS, SPORTDiscus, MEDLINE, CINAHL, Cochrane Library and Science Citation Index Expanded databases to extract the studies related to performance recovery from exercise of human beings. Original studies and their statistical analysis for recovery methods including Active Recovery, Cryotherapy/Contrast Therapy, Massage Therapy, Diet/Ergogenics, and Rehydration were examined. Results: The review produces a Research Design and Statistical Method Analysis Summary. Conclusion: Research design and statistical methods can be improved by using the guideline from the Research Design and Statistical Method Analysis Summary. This summary table lists the potential issues and suggested solutions, such as, sample size calculation, sports specific and research design issues consideration, population and measure markers selection, statistical methods for different analytical requirements, equality of variance and normality of data, post hoc analyses and effect size calculation.^
Resumo:
Mixed longitudinal designs are important study designs for many areas of medical research. Mixed longitudinal studies have several advantages over cross-sectional or pure longitudinal studies, including shorter study completion time and ability to separate time and age effects, thus are an attractive choice. Statistical methodology used in general longitudinal studies has been rapidly developing within the last few decades. Common approaches for statistical modeling in studies with mixed longitudinal designs have been the linear mixed-effects model incorporating an age or time effect. The general linear mixed-effects model is considered an appropriate choice to analyze repeated measurements data in longitudinal studies. However, common use of linear mixed-effects model on mixed longitudinal studies often incorporates age as the only random-effect but fails to take into consideration the cohort effect in conducting statistical inferences on age-related trajectories of outcome measurements. We believe special attention should be paid to cohort effects when analyzing data in mixed longitudinal designs with multiple overlapping cohorts. Thus, this has become an important statistical issue to address. ^ This research aims to address statistical issues related to mixed longitudinal studies. The proposed study examined the existing statistical analysis methods for the mixed longitudinal designs and developed an alternative analytic method to incorporate effects from multiple overlapping cohorts as well as from different aged subjects. The proposed study used simulation to evaluate the performance of the proposed analytic method by comparing it with the commonly-used model. Finally, the study applied the proposed analytic method to the data collected by an existing study Project HeartBeat!, which had been evaluated using traditional analytic techniques. Project HeartBeat! is a longitudinal study of cardiovascular disease (CVD) risk factors in childhood and adolescence using a mixed longitudinal design. The proposed model was used to evaluate four blood lipids adjusting for age, gender, race/ethnicity, and endocrine hormones. The result of this dissertation suggest the proposed analytic model could be a more flexible and reliable choice than the traditional model in terms of fitting data to provide more accurate estimates in mixed longitudinal studies. Conceptually, the proposed model described in this study has useful features, including consideration of effects from multiple overlapping cohorts, and is an attractive approach for analyzing data in mixed longitudinal design studies.^
Resumo:
Birth defects are the leading cause of infant mortality in the United States and are a major cause of lifetime disability. However, efforts to understand their causes have been hampered by a lack of population-specific data. During 1990–2004, 22 state legislatures responded to this need by proposing birth defects surveillance legislation (BDSL). The contrast between these states and those that did not pass BDSL provides an opportunity to better understand conditions associated with US public health policy diffusion. ^ This study identifies key state-specific determinants that predict: (1) the introduction of birth defects surveillance legislation (BDSL) onto states' formal legislative agenda, and (2) the successful adoption of these laws. Secondary aims were to interpret these findings in a theoretically sound framework and to incorporate evidence from three analytical approaches. ^ The study begins with a comparative case study of Texas and Oregon (states with divergent BDSL outcomes), including a review of historical documentation and content analysis of key informant interviews. After selecting and operationalizing explanatory variables suggested by the case study, Qualitative Comparative Analysis (QCA) was applied to publically available data to describe important patterns of variation among 37 states. Results from logistic regression were compared to determine whether the two methods produced consistent findings. ^ Themes emerging from the comparative case study included differing budgetary conditions and the significance of relationships within policy issue networks. However, the QCA and statistical analysis pointed to the importance of political parties and contrasting societal contexts. Notably, state policies that allow greater access to citizen-driven ballot initiatives were consistently associated with lower likelihood of introducing BDSL. ^ Methodologically, these results indicate that a case study approach, while important for eliciting valuable context-specific detail, may fail to detect the influence of overarching, systemic variables, such as party competition. However, QCA and statistical analyses were limited by a lack of existing data to operationalize policy issue networks, and thus may have downplayed the impact of personal interactions. ^ This study contributes to the field of health policy studies in three ways. First, it emphasizes the importance of collegial and consistent relationships among policy issue network members. Second, it calls attention to political party systems in predicting policy outcomes. Finally, a novel approach to interpreting state data in a theoretically significant manner (QCA) has been demonstrated.^