11 resultados para spore bacterienne
em DigitalCommons@The Texas Medical Center
Resumo:
The 90-kDa heat-shock protein (Hsp90) operates in the context of a multichaperone complex to promote maturation of nuclear and cytoplasmic clients. We have discovered that Hsp90 and the cochaperone Sba1/p23 accumulate in the nucleus of quiescent Saccharomyces cerevisiae cells. Hsp90 nuclear accumulation was unaffected in sba1Delta cells, demonstrating that Hsp82 translocates independently of Sba1. Translocation of both chaperones was dependent on the alpha/beta importin SRP1/KAP95. Hsp90 nuclear retention was coincident with glucose exhaustion and seems to be a starvation-specific response, as heat shock or 10% ethanol stress failed to elicit translocation. We generated nuclear accumulation-defective HSP82 mutants to probe the nature of this targeting event and identified a mutant with a single amino acid substitution (I578F) sufficient to retain Hsp90 in the cytoplasm in quiescent cells. Diploid hsp82-I578F cells exhibited pronounced defects in spore wall construction and maturation, resulting in catastrophic sporulation. The mislocalization and sporulation phenotypes were shared by another previously identified HSP82 mutant allele. Pharmacological inhibition of Hsp90 with macbecin in sporulating diploid cells also blocked spore formation, underscoring the importance of this chaperone in this developmental program.
Resumo:
Anthrax outbreaks in the United States and Europe and its potential use as a bioweapon have made Bacillus anthracis an interest of study. Anthrax infections are caused by the entry of B. anthracis spores into the host via the respiratory system, the gastrointestinal tract, cuts or wounds in the skin, and injection. Among these four forms, inhalational anthrax has the highest lethality rate and persistence of spores in the lungs of animals following pulmonary exposure has been noted for decades. However, details or mechanisms of spore persistence were not known. In this study, we investigated spore persistence in a mouse model. The results suggest that B. anthracis spores have special properties that promote persistence in the lung, and that there may be multiple mechanisms contributing to spore persistence. Moreover, recent discoveries from our laboratory suggest that spores evolved a sophisticated mechanism to interact with the host complement system. The complement system is a crucial part of the host defense mechanism against foreign microorganisms. Knowledge of the specific interactions that occur between the complement system and B. anthracis was limited. Studies performed in our laboratory have suggested that spores of B. anthracis can target specific proteins, such as Factor H (fH) of the complement system. Spores of B. anthracis are enclosed by an exosporium, which consists of a basal layer surrounded by a nap of hair-like filaments. The major structural component of the filaments is called Bacillus collagen-like protein of anthracis (BclA), which comprises a central collagen-like region and a globular C-terminal domain. BclA is the first point of contact with the innate system of an infected host. In this study, we investigated the molecular details of BclA-fH interaction with respect to the specific binding mechanism and the functional significance of this interaction in a murine model of anthrax infection. We hypothesized that the recruitment of fH to the spore surface by BclA limits the extent of complement activation and promotes pathogen survival and persistence in the infected host. Findings from this study are significant to understanding how to treat post-exposure prophylaxis and improve our knowledge of spores with the host immune system.
Resumo:
The eukaryotic stress response is an essential mechanism that helps protect cells from a variety of environmental stresses. Cell death can result if cells are not able to properly adapt and protect themselves against adverse stress conditions. Failure to properly deal with stress has implications in human diseases including neurodegenerative disorders and distinct cancers, emphasizing the importance of understanding the eukaryotic stress response in detail. As part of this response, expression of a battery of heat shock proteins (HSP) is induced, which act as molecular chaperones to assist in the repair or triage of unfolded proteins. The 90-kDa HSP (Hsp90) operates in the context of a multi-chaperone complex to promote the maturation of nuclear and cytoplasmic clients. I have discovered that Hsp90 and the co-chaperone Sba1 accumulate in the nucleus of quiescent Saccharomyces cerevisiae cells in a karyopherin-dependent manner. I isolated nuclear accumulation- defective HSP82 mutant alleles to probe the nature of this targeting event and identified a mutant with a single amino acid substitution (I578F) sufficient to prevent nuclear accumulation of Hsp90 in quiescent cells. Diploid hsp82-I578F cells exhibited pronounced defects in spore wall construction and maturation, resulting in catastrophic sporulation. The mislocalization and sporulation phenotypes were shared by another previously identified HSP82 mutant allele, further linking localization to Hsp90 functional status. Pharmacological inhibition of Hsp90 with macbecin in sporulating diploid cells also blocked spore formation, underscoring the importance of this chaperone in this developmental program. The yeast molecular chaperone Hsp104 is a member of the Hsp100 superfamily of AAA+ ATPases. Unlike the Hsp90 family of chaperones, Hsp104 is not restricted to a specific set of client proteins, but rather assists in reactivating stress-denatured proteins by solubilizing protein aggregates. I have discovered that Hsp104, along with the Hsp70 chaperone, Ssa1, and the sHSP Hsp26 accumulate into RNA processing bodies (P- bodies) and stress granules, sites of mRNA metabolism. I found that Hsp104 recruits both Ssa1 and Hsp26 to P-bodies and that these three chaperones are required for stress granule formation. These findings suggest a possible role for chaperones in mRNA metabolism by aiding in the assembly, disassembly or conversion of these enigmatic mRNP complexes. Taken together, the work presented in this dissertation serves to better understand the eukaryotic stress response by illustrating the importance of subcellular-chaperone localization in key biological processes.
Resumo:
Myxobacteria are single-celled, but social, eubacterial predators. Upon starvation they build multicellular fruiting bodies using a developmental program that progressively changes the pattern of cell movement and the repertoire of genes expressed. Development terminates with spore differentiation and is coordinated by both diffusible and cell-bound signals. The growth and development of Myxococcus xanthus is regulated by the integration of multiple signals from outside the cells with physiological signals from within. A collection of M. xanthus cells behaves, in many respects, like a multicellular organism. For these reasons M. xanthus offers unparalleled access to a regulatory network that controls development and that organizes cell movement on surfaces. The genome of M. xanthus is large (9.14 Mb), considerably larger than the other sequenced delta-proteobacteria. We suggest that gene duplication and divergence were major contributors to genomic expansion from its progenitor. More than 1,500 duplications specific to the myxobacterial lineage were identified, representing >15% of the total genes. Genes were not duplicated at random; rather, genes for cell-cell signaling, small molecule sensing, and integrative transcription control were amplified selectively. Families of genes encoding the production of secondary metabolites are overrepresented in the genome but may have been received by horizontal gene transfer and are likely to be important for predation.
Resumo:
In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42); the bacteriophage holin gene BA4074; and pagA (pXO1-110). The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.
Resumo:
Background. Nosocomial invasive aspergillosis (a highly fatal disease) is an increasing problem for immunocompromised patients. Aspergillus spp. can be transmitted via air (most commonly) and by water. ^ The hypothesis for this prospective study was that there is an association between patient occupancy, housekeeping practices, patients, visitors, and Aspergillus spp. loading. Rooms were sampled as not terminally cleaned (dirty) and terminally cleaned (clean). The secondary hypothesis was that Aspergillus spp. positive samples collected from more than one sampling location within the same patient room represent the same isolate. ^ Methods. Between April and October 2004, 2873 environmental samples (713 air, 607 water, 1256 surface and 297 spore traps) were collected in and around 209 “clean” and “dirty” patient rooms in a large cancer center hospital. Water sources included aerosolized water from patient room showerheads, sinks, drains, and toilets. Bioaerosol samples were from the patient room and from the running shower, flushing toilet, and outside the building. The surface samples included sink and shower drains, showerheads, and air grills. Aspergillus spp. positive samples were also sent for PCR, molecular typing (n = 89). ^ Results. All water samples were negative for Aspergillus spp. There were a total of 130 positive culturable samples (5.1%). The predominant species found was Aspergillus niger. Of the positive culturable samples, 106 (14.9%) were air and 24 (3.8%) were surface. There were 147 spore trap samples, and 49.5% were positive for Aspergillus/Penicillum spp. Of the culturable positive samples sent for PCR, 16 were indistinguishable matches. There was no significant relationship between air and water samples and positive samples from the same room. ^ Conclusion. Primarily patients, visitors and staff bring the Aspergillus spp. into the hospital. The high number of A. niger samples suggests the spores are entering the hospital from outdoors. Eliminating the materials brought to the patient floors from the outside, requiring employees, staff, and visitors to wear cover up over their street clothes, and improved cleaning procedures could further reduce positive samples. Mold strains change frequently; it is probably more significant to understand pathogenicity of viable spores than to commit resources on molecular strain testing on environmental samples alone. ^
Resumo:
A number of indoor environmental factors, including bioaerosol or aeroallergen concentrations have been identified as exacerbators for asthma and allergenic conditions of the respiratory system. People generally spend 90% to 95% of their time indoors. Therefore, understanding the environmental factors that affect the presence of aeroallergens indoors as well as outdoors is important in determining their health impact, and in identifying potential intervention methods. This study aimed to assess the relationship between indoor airborne fungal spore concentrations and indoor surface mold levels, indoor versus outdoor airborne fungal spore concentrations and the effect of previous as well as current water intrusion. Also, the association between airborne concentration of indoor fungal spores and surface mold levels and the age of the housing structure were examined. Further, the correlation between indoor concentrations of certain species was determined as well. ^ Air and surface fungal measurements and related information were obtained from a Houston-area data set compiled from visits to homes filing insurance claims. During the sampling visit these complaint homes exhibited either visible mold or a combination of visible mold and water intrusion problems. These data were examined to assess the relationships between the independent and dependent variables using simple linear regression analysis, and independent t-tests. To examine the correlation between indoor concentrations of certain species, Spearman correlation coefficients were used. ^ There were 126 houses sampled, with spring, n=43 (34.1%), and winter, n=42 (33.3%), representing the seasons with the most samples. The summer sample illustrated the highest geometric mean concentration of fungal spores, GM=5,816.5 relative to winter, fall and spring (GM=1,743.4, GM=3,683.5 and GM=2,507.4, respectively). In all seasons, greater concentrations of fungal spores were observed during the cloudy weather conditions. ^ The results indicated no statistically significant association between outdoor total airborne fungal spore concentration and total living room airborne fungal spore concentration (β = 0.095, p = 0.491). Second, living room surface mold levels were not associated with living room airborne fungal spore concentration, (β= 0.011, p = 0.669). Third, houses with and without previous water intrusion did not differ significantly with respect to either living room (t(111) = 0.710, p = 0.528) or bedroom (t(111) =1.673, p = 0.162) airborne fungal spore concentrations. Likewise houses with and without current water intrusion did not differ significantly with respect to living room (t(109)=0.716, p = 0.476) or bedroom (t(109) = 1.035, p = 0.304) airborne fungal spore concentration. Fourth, houses with and without current water intrusion did not differ significantly with respect to living room (χ 2 (5) = 5.61, p = 0.346), or bedroom (χ 2 (5) = 1.80, p = 0.875) surface mold levels. Fifth, the age of the house structure did not predict living room (β = 0.023, p = 0.102) and bedroom (β = 0.023, p = 0.065) surface mold levels nor living room (β = 0.002, p = 0.131) and bedroom (β = 0.001, p = 0.650) fungal spore airborne concentration. Sixth, in houses with visually observed mold growth there was statistically significant differences between the mean living room concentrations and mean outdoor concentrations for Cladosporium (t (107) = 11.73, p < 0.0001), Stachybotrys (t (106)=2.288, p = 0.024, and Nigrosporia (t (102) = 2.267, p = 0.025). Finally, there was a significant correlation between several living room fungal species pairs, namely, Cladosporium and Stachybotrys (r = 0.373, p <0.01, n=65), Curvularia and Aspergillus/Penicillium (r = 0.205, p < 0.05, n= 111)), Curvularia and Stachybotrys (r = 0.205, p < 0.05, n=111), Nigrospora and Chaetomium (r = 0.254, p < 0.01, n=105) and Stachybotrys and Nigrospora (r = 0.269, p < 0.01, n=105). ^ This study has demonstrated several positive findings, i.e., significant pairwise correlations of concentrations of several fungal species in living room air, and significant differences between indoor and outdoor concentrations of three fungal species in homes with visible mold. No association was observed between indoor and outdoor fungal spore concentrations. Neither living room nor bedroom airborne spore concentrations and surface mold levels were related to the age of the house or to water intrusion, either previous or current. Therefore, these findings suggest the need for evaluating additional parameters, as well as combinations of factors such as humidity, temperature, age of structure, ventilation, and room size to better understand the determinants of airborne fungal spore concentrations and surface mold levels in homes. ^
Resumo:
Clostridium difficile is the leading definable cause of nosocomial diarrhea worldwide due to its virulence, multi-drug resistance, spore-forming ability, and environmental persistence. The incidence of C. difficile infection (CDI) has been increasing exponentially in the last decade. Virulent strains of C. difficile produce either toxin A and/or toxin B, which are essential for the pathogenesis of this bacterium. Current methods for diagnosing CDI are mostly qualitative tests that detect the bacterium, the toxins, or the toxin genes. These methods do not differentiate virulent C. difficile strains that produce active toxins from non-virulent strains that do not produce toxins or produce inactive toxins. Based on the knowledge that C. difficile toxins A and B cleave a substrate that is stereochemically similar to the native substrate of the toxins, uridine diphosphoglucose, a quantitative, cost-efficient assay, the Cdifftox activity assay, was developed to measure C. difficile toxin activity. The concept behind the activity assay was modified to develop a novel, rapid, sensitive, and specific assay for C. difficile toxins in the form of a selective and differential agar plate culture medium, the Cdifftox Plate assay (CDPA). This assay combines in a single step the specific identification of C. difficile strains and the detection of active toxin(s). The CDPA was determined to be extremely accurate (99.8% effective) at detecting toxin-producing strains based on the analysis of 528 C. difficile isolates selected from 50 tissue culture cytotoxicity assay-positive clinical stool samples. This new assay advances and improves the culture methodology in that only C. difficile strains will grow on this medium and virulent strains producing active toxins can be differentiated from non-virulent strains. This new method reduces the time and effort required to isolate and confirm toxin-producing C. difficile strains and provides a clinical isolate for antibiotic susceptibility testing and strain typing. The Cdifftox activity assay was used to screen for inhibitors of toxin activity. Physiological levels of the common human conjugated bile salt, taurocholate, was found to inhibit toxin A and B in vitro activities. When co-incubated ex vivo with purified toxin B, taurocholate protected Caco-2 colonic epithelial cells from the damaging effects of the toxin. Furthermore, using a caspase-3 detection assay, taurocholate reduced the extent of toxin B-induced Caco-2 cell apoptosis. These results suggest that bile salts can be effective in protecting the gut epithelium from C. difficile toxin damage, thus, the delivery of physiologic amounts of taurocholate to the colon, where it is normally in low concentration, could be useful in CDI treatment. These findings may help to explain why bile rich small intestine is spared damage in CDI, while the bile salt poor colon is vulnerable in CDI. Toxin synthesis in C. difficile occurs during the stationary phase, but little is known about the regulation of these toxins. It was hypothesized that C. difficile toxin synthesis is regulated by a quorum sensing mechanism. Two lines of evidence supported this hypothesis. First, a small (KDa), diffusible, heat-stable toxin-inducing activity accumulates in the medium of high-density C. difficile cells. This conditioned medium when incubated with low-density log-phase cells causes them to produce toxin early (2-4 hrs instead of 12-16 hrs) and at elevated levels when compared with cells grown in fresh medium. These data suggested that C. difficile cells extracellularly release an inducing molecule during growth that is able to activate toxin synthesis prematurely and demonstrates for the first time that toxin synthesis in C. difficile is regulated by quorum signaling. Second, this toxin-inducing activity was partially purified from high-density stationary-phase culture supernatant fluid by HPLC and confirmed to induce early toxin synthesis, even in C. difficile virulent strains that over-produce the toxins. Mass spectrometry analysis of the purified toxin-inducing fraction from HPLC revealed a cyclic compound with a mass of 655.8 Da. It is anticipated that identification of this toxin-inducing compound will advance our understanding of the mechanism involved in the quorum-dependent regulation of C. difficile toxin synthesis. This finding should lead to the development of even more sensitive tests to diagnose CDI and may lead to the discovery of promising novel therapeutic targets that could be harnessed for the treatment C. difficile infections.
Resumo:
Background. It is estimated that hospitals spend between 28 and 33 billion dollars per year as a result of hospital-acquired infections. (Scott, 2009) The costs continue to rise despite the guidance and controls provided by hospital infection control staff to reduce patient exposures to fungal spores and other infectious agents. With all processes and controls in place, the vented elevator shaft represents an unprotected opening from the top of the building to the lower floors. The hypothesis for this prospective study is that there is a positive correlation between the number of Penicillium/Aspergillus-like spores, Cladosporium, ascospores, basidiospores in spores/m3 as individual spore categories found in the hoistway vent of an elevator shaft and the levels of the same spores, sampled near-simultaneously in the outdoor intake of the elevator shaft. Specific aims of this study include determining if external Penicillium/Aspergillus-like spores are entering the healthcare facility via the elevator shaft and hoistway vents. Additional aims include determining levels of Penicillium/Aspergillus-like spores outdoors, in the elevator shafts, and indoors in areas possibly affected by elevator shaft air; and, finally, to evaluate whether any effect is observed due to the installation of a hoistway vent damper, installed serendipitously during this study. ^ Methods. Between April 2010 and September 2010, a total of 3,521 air samples were collected, including 363 spore trap samples analyzed microscopically for seven spore types, and polymerase chain reaction analyses on 254 air samples. 2178 particle count measurements, 363 temperature readings and 363 relative humidity readings were also obtained from 7 different locations potentially related to the path of air travel inside and near a centrally-located and representative elevator shaft. ^ Results. Mean Penicillium/Aspergillus-like spore values were higher outside the building (530 spores/m3 of air) than inside the hoistway (22.8 spores/m3) during the six month study. Mean values inside the hospital were lower than outside throughout the study, ranging from 15 to 73 spores/m3 of air. Mean Penicillium/Aspergillus-like spore counts inside the hoistway decreased from 40.1 spores/m3 of air to 9 spores/m3 of air following the installation of a back draft damper between the outside air and the elevator shaft. Comparison of samples collected outside the building and inside the hoistway vent prior to installing the damper indicated a strong positive correlation (Spearman's Rho=0.8008, p=0.0001). The similar comparison following the damper installation indicated a moderate non-significant inverse correlation (Spearman's rho = −0.2795, p=0.1347). ^ Conclusion. Elevator shafts are one pathway for mold spores to enter a healthcare facility. A significant correlation was detected between spores and particle counts inside the hoistway and outside prior to changes in the ventilation system. The insertion of the back draft damper appeared to lower the spore counts inside the hoistway and inside the building. The mold spore counts in air outside the study building were higher in the period following the damper installation while the levels inside the hoistway and hospital decreased. Cladosporium and Penicillium/Aspergillus -like spores provided a method for evaluating indoor air quality as a natural tracer from outside the building to inside the building. Ascospores and basidiospores were not a valuable tracer due to low levels of detection during this study. ^ Installation of a back draft damper provides additional protection for the indoor environment of a hospital or healthcare facility, including in particular patients who may be immunocompromised. Current design standards and references do not require the installation of a back draft damper, but evaluation of adding language to relevant building codes should be considered. The data indicate a reduction in levels of Penicillium/Aspergillus -like spores, particle counts and a reduction in relative humidity inside of the elevator shaft after damper installation.^
Resumo:
Heterotrimeric G protein-mediated signal transduction is one of numerous means that cells utilize to respond to external stimuli. G proteins consist of α, β andγ subunits. Extracellular ligands bind to seven-transmembrane helix receptors, triggering conformational changes. This is followed by activation of coupled G proteins through the exchange of GDP for GTP on the Gα subunit. Once activated, Gα-GTP dissociates from the βγ dimer. Both of these two moieties can interact with downstream effectors, such as adenylyl cyclase, phospholipase C, phosphodiesterases, or ion channels, leading to a series of changes in cellular metabolism and physiology. ^ Neurospora crassa is a eukaryotic multicellular filamentous fungus, with asexual/vegetative and sexual phases to its life cycle. Three Gα (GNA-1, GNA-2, GNA-3) and one Gβ (GNB-1) proteins have been identified in this organism. This dissertation investigates GNA-1 and GNB-1 mediated signaling pathways in N. crassa. ^ GNA-1 was the first identified microbial Gα that belongs to a mammalian superfamily (Gαi). Deletion of GNA-1 leads to multiple defects in N. crassa. During the asexual cycle, Δgna-1 strains display a slower growth rate and delayed conidiation on solid medium. In the sexual cycle, the Δgna-1 mutant is male-fertile but female-sterile. Biochemical studies have shown that Δ gna-1 strains have lower adenosine 3′–5 ′ cyclic monophosphate (cAMP) levels than wild type under conditions where phenotypic defects are observed. In this thesis work, strains containing one of two GTPase-deficient gna-1 alleles (gna-1 R178C, gna-1Q204L) leading to constitutive activation of GNA-1 have been constructed and characterized. Activation of GNA-1 causes uncontrolled aerial hyphae proliferation, elevated sensitivity to heat and oxidative stresses, and lower carotenoid synthesis. To further study the function of GNA-1, constructs to enable expression of mammalian Gαi superfamily members were transformed into a Δ gna-1 strain, and complementation of Δgna-1 defects investigated. Gαs, which is not a member of Gα i superfamily was used as a control. These mammalian Gα genes were able to rescue the vegetative growth rate defect of the Δ gna-1 strain in the following order: Gαz > Gα o > Gαs > Gαt > Gαi. In contrast, only Gαo was able to complement the sexual defect of a Δgna-1 strain. With regard to the thermotolerance phenotype, none of the mammalian Gα genes restored the sensitivity to a wild type level. These results suggest that GNA-1 regulates two independent pathways during the vegetative and sexual cycles in N. crassa. ^ GNB-1, a G protein β subunit from N. crassa, was identified and its functions investigated in this thesis work. The sequence of the gnb-1 gene predicts a polypeptide of 358 residues with a molecular mass of 39.7 kDa. GNB-1 exhibits 91% identity to Cryphonectria parasitica CPGB-1, and also displays significant homology with human and Dictyostelium Gβ genes (∼66%). A Δ gnb-1 strain was constructed and shown to exhibit defects in asexual spore germination, vacuole number and size, mass accumulation and female fertility. A novel role for GNB-1 in regulation of GNA-1 and GNA-2 protein levels was also demonstrated. ^
Resumo:
The gliding bacterium Myxococcus xanthus aggregates to form spore-filled fruiting bodies when starved at high density. All of the identified M. xanthus lipopolysaccharide (LPS) O-antigen biosynthesis mutants exhibit defective motility and fruiting-body development. To determine the cause of these phenotypes, the cell-surface properties of the LPS O-antigen mutants were compared to wild-type cells. The binding characteristics of wild-type and LPS O-antigen-defective strains to cationic resin indicate that the mutant cell surfaces are more electronegative. Antibiotic sensitivity and hexadecane adhesion assays indicate that the wild-type M. xanthus cell surface is hydrophobic, supporting the idea that phospholipids are present in the outer leaflet of the outer membrane. The absence of the LPS O-antigen appears to expose charges associated with phospholipids and LPS core/lipid A, resulting in a dramatic alteration of the cell-surface organization and charge. These differences may affect the interaction of the LPS O-antigen mutants with their substratum and neighboring cells, leading to defects in social and single-cell gliding motility and thus, deficiencies in fruiting body formation. ^ The LPS O-antigen biosynthetic mutations also bypass the requirement of 4521 gene expression for the cell-density signal, A signal. The 4521 gene is overexpressed in these mutants. This 4521 overexpression is dependent on the sensor kinase SasS. Co-development with wild-type cells, or the addition of crude polysaccharides or membrane vesicles restores the ability of LPS O-antigen mutants to form fruiting bodies and lowers 4521 developmental gene expression to wild-type levels. Wild-type vesicles may attach or incorporate into the outer membrane of the mutants that lack LPS O-antigen, restoring a wild-type periplasmic status and allowing for normal levels of 4521 activity and fruiting body formation. We propose that the LPS composition and the configuration of the outer membrane are important elements for the complex behavioral response of M. xanthus fruiting body development. ^