4 resultados para spectrum proporties

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trimethylaminuria (TMAU) or Fish odor syndrome is an autosomal recessive disease that is characterized by pungent body odor with subsequent psychosocial complications. There are limited studies of the sequence variants causing TMAU in the literature with most studies describing only one or two patients and lacking genotype-phenotype correlations. Also to date, there is no laboratory in the US or Europe that offers TMA genetic testing on a clinical basis. We have recently validated genetic testing in the University of Colorado DNA Diagnostic Laboratory. We have a database of a few dozen patients with a biochemical diagnosis of TMA at the University of Colorado at Denver Health Sciences Center (UCDHSC) which includes a few patients with the classical form of the disease. We have used the newly established clinical test in our institution to attempt to characterize the genotype (sequence variants including mutations and polymorphisms) of classical TMAU patients and to establish a genotype-phenotype (biochemical and clinical) association. The questionnaire results confirmed most of the previously reported epidemiological findings of TMAU and also indicated that TMAU patients use multiple intervention measures in attempt to control their symptoms with dietary control being most effective. Despite the complexity of intervention, most patients did not have any medical follow up and there was underutilization of specialist care. In a set of our patients, two deleterious mutations were identified in 4/12 patients including a novel T237P sequence variant, while the majority of our patients (8/12) did not reveal any mutations. Some of the latter were double heterozygous for the E158K and E308G polymorphisms which could explain a mild phenotype while others had only the E158K variant which raised the question of undetected mutations. These results indicate that further experiments are needed to further delineate the full mutational spectrum of the FMO3 gene. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. The HIV/AIDS disease burden disproportionately affects minority populations, specifically African Americans. While sexual risk behaviors play a role in the observed HIV burden, other factors including gender, age, socioeconomics, and barriers to healthcare access may also be contributory. The goal of this study was to determine how far down the HIV/AIDS disease process people of different ethnicities first present for healthcare. The study specifically analyzed the differences in CD4 cell counts at the initial HIV-1 diagnosis with respect to ethnicity. The study also analyzed racial differences in HIV/AIDS risk factors. ^ Methods. This is a retrospective study using data from the Adult Spectrum of HIV Disease (ASD), collected by the City of Houston Department of Health. The ASD database contains information on newly reported HIV cases in the Harris County District Hospitals between 1989 and 2000. Each patient had an initial and a follow-up report. The extracted variables of interest from the ASD data set were CD4 counts at the initial HIV diagnosis, race, gender, age at HIV diagnosis and behavioral risk factors. One-way ANOVA was used to examine differences in baseline CD4 counts at HIV diagnosis between racial/ethnic groups. Chi square was used to analyze racial differences in risk factors. ^ Results. The analyzed study sample was 4767. The study population was 47% Black, 37% White and 16% Hispanic [p<0.05]. The mean and median CD4 counts at diagnosis were 254 and 193 cells per ml, respectively. At the initial HIV diagnosis Blacks had the highest average CD4 counts (285), followed by Whites (233) and Hispanics (212) [p<0.001 ]. These statistical differences, however, were only observed with CD4 counts above 350 [p<0.001], even when adjusted for age at diagnosis and gender [p<0.05]. Looking at risk factors, Blacks were mostly affected by intravenous drug use (IVDU) and heterosexuality, whereas Whites and Hispanics were more affected by male homosexuality [ p<0.05]. ^ Conclusion. (1) There were statistical differences in CD4 counts with respect to ethnicity, but these differences only existed for CD4 counts above 350. These differences however do not appear to have clinical significance. Antithetically, Blacks had the highest CD4 counts followed by Whites and Hispanics. (2) 50% of this study group clinically had AIDS at their initial HIV diagnosis (median=193), irrespective of ethnicity. It was not clear from data analysis if these observations were due to failure of early HIV surveillance, HIV testing policies or healthcare access. More studies need to be done to address this question. (3) Homosexuality and bisexuality were the biggest risk factors for Whites and Hispanics, whereas for Blacks were mostly affected by heterosexuality and IVDU, implying a need for different public health intervention strategies for these racial groups. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High Angular Resolution Diffusion Imaging (HARDI) techniques, including Diffusion Spectrum Imaging (DSI), have been proposed to resolve crossing and other complex fiber architecture in the human brain white matter. In these methods, directional information of diffusion is inferred from the peaks in the orientation distribution function (ODF). Extensive studies using histology on macaque brain, cat cerebellum, rat hippocampus and optic tracts, and bovine tongue are qualitatively in agreement with the DSI-derived ODFs and tractography. However, there are only two studies in the literature which validated the DSI results using physical phantoms and both these studies were not performed on a clinical MRI scanner. Also, the limited studies which optimized DSI in a clinical setting, did not involve a comparison against physical phantoms. Finally, there is lack of consensus on the necessary pre- and post-processing steps in DSI; and ground truth diffusion fiber phantoms are not yet standardized. Therefore, the aims of this dissertation were to design and construct novel diffusion phantoms, employ post-processing techniques in order to systematically validate and optimize (DSI)-derived fiber ODFs in the crossing regions on a clinical 3T MR scanner, and develop user-friendly software for DSI data reconstruction and analysis. Phantoms with a fixed crossing fiber configuration of two crossing fibers at 90° and 45° respectively along with a phantom with three crossing fibers at 60°, using novel hollow plastic capillaries and novel placeholders, were constructed. T2-weighted MRI results on these phantoms demonstrated high SNR, homogeneous signal, and absence of air bubbles. Also, a technique to deconvolve the response function of an individual peak from the overall ODF was implemented, in addition to other DSI post-processing steps. This technique greatly improved the angular resolution of the otherwise unresolvable peaks in a crossing fiber ODF. The effects of DSI acquisition parameters and SNR on the resultant angular accuracy of DSI on the clinical scanner were studied and quantified using the developed phantoms. With a high angular direction sampling and reasonable levels of SNR, quantification of a crossing region in the 90°, 45° and 60° phantoms resulted in a successful detection of angular information with mean ± SD of 86.93°±2.65°, 44.61°±1.6° and 60.03°±2.21° respectively, while simultaneously enhancing the ODFs in regions containing single fibers. For the applicability of these validated methodologies in DSI, improvement in ODFs and fiber tracking from known crossing fiber regions in normal human subjects were demonstrated; and an in-house software package in MATLAB which streamlines the data reconstruction and post-processing for DSI, with easy to use graphical user interface was developed. In conclusion, the phantoms developed in this dissertation offer a means of providing ground truth for validation of reconstruction and tractography algorithms of various diffusion models (including DSI). Also, the deconvolution methodology (when applied as an additional DSI post-processing step) significantly improved the angular accuracy of the ODFs obtained from DSI, and should be applicable to ODFs obtained from the other high angular resolution diffusion imaging techniques.