11 resultados para spatiotemporal entropic thresholding
em DigitalCommons@The Texas Medical Center
Resumo:
Background The literature suggests that the distribution of female breast cancer mortality demonstrates spatial concentration. There remains a lack of studies on how the mortality burden may impact racial groups across space and over time. The present study evaluated the geographic variations in breast cancer mortality in Texas females according to three predominant racial groups (non-Hispanic White, Black, and Hispanic females) over a twelve-year period. It sought to clarify whether the spatiotemporal trend might place an uneven burden on particular racial groups, and whether the excess trend has persisted into the current decade. Methods The Spatial Scan Statistic was employed to examine the geographic excess of breast cancer mortality by race in Texas counties between 1990 and 2001. The statistic was conducted with a scan window of a maximum of 90% of the study period and a spatial cluster size of 50% of the population at risk. The next scan was conducted with a purely spatial option to verify whether the excess mortality persisted further. Spatial queries were performed to locate the regions of excess mortality affecting multiple racial groups. Results The first scan identified 4 regions with breast cancer mortality excess in both non-Hispanic White and Hispanic female populations. The most likely excess mortality with a relative risk of 1.12 (p = 0.001) occurred between 1990 and 1996 for non-Hispanic Whites, including 42 Texas counties along Gulf Coast and Central Texas. For Hispanics, West Texas with a relative risk of 1.18 was the most probable region of excess mortality (p = 0.001). Results of the second scan were identical to the first. This suggested that the excess mortality might not persist to the present decade. Spatial queries found that 3 counties in Southeast and 9 counties in Central Texas had excess mortality involving multiple racial groups. Conclusion Spatiotemporal variations in breast cancer mortality affected racial groups at varying levels. There was neither evidence of hot-spot clusters nor persistent spatiotemporal trends of excess mortality into the present decade. Non-Hispanic Whites in the Gulf Coast and Hispanics in West Texas carried the highest burden of mortality, as evidenced by spatial concentration and temporal persistence.
Resumo:
Background Accidental poisoning is one of the leading causes of injury in the United States, second only to motor vehicle accidents. According to the Centers for Disease Control and Prevention, the rates of accidental poisoning mortality have been increasing in the past fourteen years nationally. In Texas, mortality rates from accidental poisoning have mirrored national trends, increasing linearly from 1981 to 2001. The purpose of this study was to determine if there are spatiotemporal clusters of accidental poisoning mortality among Texas counties, and if so, whether there are variations in clustering and risk according to gender and race/ethnicity. The Spatial Scan Statistic in combination with GIS software was used to identify potential clusters between 1980 and 2001 among Texas counties, and Poisson regression was used to evaluate risk differences. Results Several significant (p < 0.05) accidental poisoning mortality clusters were identified in different regions of Texas. The geographic and temporal persistence of clusters was found to vary by racial group, gender, and race/gender combinations, and most of the clusters persisted into the present decade. Poisson regression revealed significant differences in risk according to race and gender. The Black population was found to be at greatest risk of accidental poisoning mortality relative to other race/ethnic groups (Relative Risk (RR) = 1.25, 95% Confidence Interval (CI) = 1.24 – 1.27), and the male population was found to be at elevated risk (RR = 2.47, 95% CI = 2.45 – 2.50) when the female population was used as a reference. Conclusion The findings of the present study provide evidence for the existence of accidental poisoning mortality clusters in Texas, demonstrate the persistence of these clusters into the present decade, and show the spatiotemporal variations in risk and clustering of accidental poisoning deaths by gender and race/ethnicity. By quantifying disparities in accidental poisoning mortality by place, time and person, this study demonstrates the utility of the spatial scan statistic combined with GIS and regression methods in identifying priority areas for public health planning and resource allocation.
Resumo:
Neurogranin (Ng) is a postsynaptic IQ-motif containing protein that accelerates Ca(2+) dissociation from calmodulin (CaM), a key regulator of long-term potentiation and long-term depression in CA1 pyramidal neurons. The exact physiological role of Ng, however, remains controversial. Two genetic knockout studies of Ng showed opposite outcomes in terms of the induction of synaptic plasticity. To understand its function, we test the hypothesis that Ng could regulate the spatial range of action of Ca(2+)/CaM based on its ability to accelerate the dissociation of Ca(2+) from CaM. Using a mathematical model constructed on the known biochemistry of Ng, we calculate the cycle time that CaM molecules alternate between the fully Ca(2+) saturated state and the Ca(2+) unbound state. We then use these results and include diffusion of CaM to illustrate the impact that Ng has on modulating the spatial profile of Ca(2+)-saturated CaM within a model spine compartment. Finally, the first-passage time of CaM to transition from the Ca(2+)-free state to the Ca(2+)-saturated state was calculated with or without Ng present. These analyses suggest that Ng regulates the encounter rate between Ca(2+) saturated CaM and its downstream targets during postsynaptic Ca(2+) transients.
Resumo:
Using diffusion tensor tractography, we quantified the microstructural changes in the association, projection, and commissural compact white matter pathways of the human brain over the lifespan in a cohort of healthy right-handed children and adults aged 6-68 years. In both males and females, the diffusion tensor radial diffusivity of the bilateral arcuate fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, corticospinal, somatosensory tracts, and the corpus callosum followed a U-curve with advancing age; fractional anisotropy in the same pathways followed an inverted U-curve. Our study provides useful baseline data for the interpretation of data collected from patients.
Resumo:
This study retrospectively evaluated the spatial and temporal disease patterns associated with influenza-like illness (ILI), positive rapid influenza antigen detection tests (RIDT), and confirmed H1N1 S-OIV cases reported to the Cameron County Department of Health and Human Services between April 26 and May 13, 2009 using the space-time permutation scan statistic software SaTScan in conjunction with geographical information system (GIS) software ArcGIS 9.3. The rate and age-adjusted relative risk of each influenza measure was calculated and a cluster analysis was conducted to determine the geographic regions with statistically higher incidence of disease. A Poisson distribution model was developed to identify the effect that socioeconomic status, population density, and certain population attributes of a census block-group had on that area's frequency of S-OIV confirmed cases over the entire outbreak. Predominant among the spatiotemporal analyses of ILI, RIDT and S-OIV cases in Cameron County is the consistent pattern of a high concentration of cases along the southern border with Mexico. These findings in conjunction with the slight northward space-time shifts of ILI and RIDT cluster centers highlight the southern border as the primary site for public health interventions. Finally, the community-based multiple regression model revealed that three factors—percentage of the population under age 15, average household size, and the number of high school graduates over age 25—were significantly associated with laboratory-confirmed S-OIV in the Lower Rio Grande Valley. Together, these findings underscore the need for community-based surveillance, improve our understanding of the distribution of the burden of influenza within the community, and have implications for vaccination and community outreach initiatives.^
Resumo:
This study represents a secondary analysis of the merging of emergency room visits and daily ozone and PM2.5. Although the adverse health effects of ozone and fine particulate matter have been documented in the literature, evidence regarding the health risks of these two pollutants in Harris County, Texas, is limited. Harris County (Houston) has sufficiently unique characteristics that analysis of these relationships in this setting and with the ozone and industry issues in Houston is informative. The objective of this study was to investigate the association between the joint exposure to ozone and fine particulate matter, and emergency room diagnoses of chronic obstructive pulmonary disease and cardiovascular disease in Harris County, Texas, from 2004 to 2009, with zero and one day lags. ^ The study variables were daily emergency room visits for Harris County, Texas, from 2004 to 2009, temperature, relative humidity, east wind component, north wind component, ozone, and fine particulate matter. Information about each patient's age, race, and gender was also included. The two dichotomous outcomes were emergency room visits diagnoses for chronic obstructive pulmonary disease and cardiovascular disease. Estimates of ozone and PM2.5 were interpolated using kriging, in which estimates of the two pollutants were predicted from monitoring data for every case residence zip code for every day of the six years, over 3 million estimates (one of each pollutant for each case in the database). ^ Logistic regressions were conducted to estimate odds ratios of the two outcomes. Three analyses were conducted: one for all records, another for visits during the four months of April and September of 2005 and 2009, and a third one for visits from zip codes that are close to PM2.5 monitoring stations (east area of Harris County). The last two analyses were designed to investigate special temporal and spatial characteristics of the associations. ^ The dataset included all ER visits surveyed by Safety Net from 2004 to 2009, exceeding 3 million visits for all causes. There were 95,765 COPD and 96,596 CVD cases during this six year period. A 1-μg/m3 increase in PM2.5 on the same day was associated with a 1.0% increase in the odds of chronic obstructive pulmonary disease emergency room diagnoses, a 0.4% increase in the odds of cardiovascular disease emergency room diagnoses, and a 0.2% increase in the odds of cardiovascular disease emergency room diagnoses on the following day. A 1-ppb increase in ozone was associated with a 0.1% increase in the odds of chronic obstructive pulmonary disease emergency room diagnoses on the same day. These four percentages add up to 1.7% of ER visits. That is, over the period of six years, one unit increase for both ozone and PM2.5 (joint increase), resulted in about 55,286 (3,252,102 * 0.017) extra ER visits for CVD or COPD, or 9,214 extra ER visits per year. ^ After adjustment for age, race, gender, day of the week, temperature, relative humidity, east wind component, north wind component, and wind speed, there were statistically significant associations between emergency room chronic obstructive pulmonary disease diagnosis in Harris County, Texas, with joint exposure to ozone and fine particulate matter for the same day; and between emergency room cardiovascular disease diagnosis and exposure to PM2.5 of the same day and the previous day. ^ Despite the small association between the two air pollutants and the health outcomes, this study points to important findings. Namely, the need to identify reasons for the increase of CVD and COPD ER visits over the course of the project, the statistical association between humidity (or whatever other variables for which it may serve as a surrogate) and CVD and COPD cases, and the confirmatory finding that males and blacks have higher odds for the two outcomes, as consistent with other studies. ^ An important finding of this research suggests that the number and distribution of PM2.5 monitors in Harris County - although not evenly spaced geographically—are adequate to detect significant association between exposure and the two outcomes. In addition, this study points to other potential factors that contribute to the rising incidence rates of CVD and COPD ER visits in Harris County such as population increases, patient history, life style, and other pollutants. Finally, results of validation, using a subset of the data demonstrate the robustness of the models.^
Resumo:
Magnetic resonance temperature imaging (MRTI) is recognized as a noninvasive means to provide temperature imaging for guidance in thermal therapies. The most common method of estimating temperature changes in the body using MR is by measuring the water proton resonant frequency (PRF) shift. Calculation of the complex phase difference (CPD) is the method of choice for measuring the PRF indirectly since it facilitates temperature mapping with high spatiotemporal resolution. Chemical shift imaging (CSI) techniques can provide the PRF directly with high sensitivity to temperature changes while minimizing artifacts commonly seen in CPD techniques. However, CSI techniques are currently limited by poor spatiotemporal resolution. This research intends to develop and validate a CSI-based MRTI technique with intentional spectral undersampling which allows relaxed parameters to improve spatiotemporal resolution. An algorithm based on autoregressive moving average (ARMA) modeling is developed and validated to help overcome limitations of Fourier-based analysis allowing highly accurate and precise PRF estimates. From the determined acquisition parameters and ARMA modeling, robust maps of temperature using the k-means algorithm are generated and validated in laser treatments in ex vivo tissue. The use of non-PRF based measurements provided by the technique is also investigated to aid in the validation of thermal damage predicted by an Arrhenius rate dose model.
Resumo:
DCE-MRI is an important technique in the study of small animal cancer models because its sensitivity to vascular changes opens the possibility of quantitative assessment of early therapeutic response. However, extraction of physiologically descriptive parameters from DCE-MRI data relies upon measurement of the vascular input function (VIF), which represents the contrast agent concentration time course in the blood plasma. This is difficult in small animal models due to artifacts associated with partial volume, inflow enhancement, and the limited temporal resolution achievable with MR imaging. In this work, the development of a suite of techniques for high temporal resolution, artifact resistant measurement of the VIF in mice is described. One obstacle in VIF measurement is inflow enhancement, which decreases the sensitivity of the MR signal to the presence of contrast agent. Because the traditional techniques used to suppress inflow enhancement degrade the achievable spatiotemporal resolution of the pulse sequence, improvements can be achieved by reducing the time required for the suppression. Thus, a novel RF pulse which provides spatial presaturation contemporaneously with the RF excitation was implemented and evaluated. This maximizes the achievable temporal resolution by removing the additional RF and gradient pulses typically required for suppression of inflow enhancement. A second challenge is achieving the temporal resolution required for accurate characterization of the VIF, which exceeds what can be achieved with conventional imaging techniques while maintaining adequate spatial resolution and tumor coverage. Thus, an anatomically constrained reconstruction strategy was developed that allows for sampling of the VIF at extremely high acceleration factors, permitting capture of the initial pass of the contrast agent in mice. Simulation, phantom, and in vivo validation of all components were performed. Finally, the two components were used to perform VIF measurement in the murine heart. An in vivo study of the VIF reproducibility was performed, and an improvement in the measured injection-to-injection variation was observed. This will lead to improvements in the reliability of quantitative DCE-MRI measurements and increase their sensitivity.
Resumo:
BACKGROUND: Prostate cancer mortality disparities exist among racial/ethnic groups in the United States, yet few studies have explored the spatiotemporal trend of the disease burden. To better understand mortality disparities by geographic regions over time, the present study analyzed the geographic variations of prostate cancer mortality by three Texas racial/ethnic groups over a 22-year period. METHODS: The Spatial Scan Statistic developed by Kulldorff et al was used. Excess mortality was detected using scan windows of 50% and 90% of the study period and a spatial cluster size of 50% of the population at risk. Time trend was analyzed to examine the potential temporal effects of clustering. Spatial queries were used to identify regions with multiple racial/ethnic groups having excess mortality. RESULTS: The most likely area of excess mortality for blacks occurred in Dallas-Metroplex and upper east Texas areas between 1990 and 1999; for Hispanics, in central Texas between 1992 and 1996: and for non-Hispanic whites, in the upper south and west to central Texas areas between 1990 and 1996. Excess mortality persisted among all racial/ethnic groups in the identified counties. The second scan revealed that three counties in west Texas presented an excess mortality for Hispanics from 1980-2001. Many counties bore an excess mortality burden for multiple groups. There is no time trend decline in prostate cancer mortality for blacks and non-Hispanic whites in Texas. CONCLUSION: Disparities in prostate cancer mortality among racial/ethnic groups existed in Texas. Central Texas counties with excess mortality in multiple subgroups warrant further investigation.
Resumo:
Although we have amassed extensive catalogues of signalling network components, our understanding of the spatiotemporal control of emergent network structures has lagged behind. Dynamic behaviour is starting to be explored throughout the genome, but analysis of spatial behaviours is still confined to individual proteins. The challenge is to reveal how cells integrate temporal and spatial information to determine specific biological functions. Key findings are the discovery of molecular signalling machines such as Ras nanoclusters, spatial activity gradients and flexible network circuitries that involve transcriptional feedback. They reveal design principles of spatiotemporal organization that are crucial for network function and cell fate decisions.
Resumo:
Introduction. Tissue engineering techniques offer a potential means to develop a tissue engineered construct (TEC) for the treatment of tissue and organ deficiencies. However, a lack of adequate vascularization is a limiting factor in the development of most viable engineered tissues. Vascular endothelial growth factor (VEGF) could aid in the development of a viable vascular network within TECs. The long-term goals of this research are to develop clinically relevant, appropriately vascularized TECs for use in humans. This project tested the hypothesis that the delivery of VEGF via controlled release from biodegradable microspheres would increase the vascular density and rate of angiogenesis within a model TEC. ^ Materials and methods. Biodegradable VEGF-encapsulated microspheres were manufactured using a novel method entitled the Solid Encapsulation/Single Emulsion/Solvent Extraction technique. Using a PLGA/PEG polymer blend, microspheres were manufactured and characterized in vitro. A model TEC using fibrin was designed for in vivo tissue engineering experimentation. At the appropriate timepoint, the TECs were explanted, and stained and quantified for CD31 using a novel semi-automated thresholding technique. ^ Results. In vitro results show the microspheres could be manufactured, stored, degrade, and release biologically active VEGF. The in vivo investigations revealed that skeletal muscle was the optimal implantation site as compared to dermis. In addition, the TECs containing fibrin with VEGF demonstrated significantly more angiogenesis than the controls. The TECs containing VEGF microspheres displayed a significant increase in vascular density by day 10. Furthermore, TECs containing VEGF microspheres had a significantly increased relative rate of angiogenesis from implantation day 5 to day 10. ^ Conclusions. A novel technique for producing microspheres loaded with biologically active proteins was developed. A defined concentration of microspheres can deliver a quantifiable level of VEGF with known release kinetics. A novel model TEC for in vivo tissue engineering investigations was developed. VEGF and VEGF microspheres stimulate angiogenesis within the model TEC. This investigation determined that biodegradable rhVEGF 165-encapsulated microspheres increased the vascular density and relative rate of angiogenesis within a model TEC. Future applications could include the incorporation of microvascular fragments into the model TEC and the incorporation of specific tissues, such as fat or bone. ^