7 resultados para spatial-temporal constraints
em DigitalCommons@The Texas Medical Center
Resumo:
BACKGROUND: Prostate cancer mortality disparities exist among racial/ethnic groups in the United States, yet few studies have explored the spatiotemporal trend of the disease burden. To better understand mortality disparities by geographic regions over time, the present study analyzed the geographic variations of prostate cancer mortality by three Texas racial/ethnic groups over a 22-year period. METHODS: The Spatial Scan Statistic developed by Kulldorff et al was used. Excess mortality was detected using scan windows of 50% and 90% of the study period and a spatial cluster size of 50% of the population at risk. Time trend was analyzed to examine the potential temporal effects of clustering. Spatial queries were used to identify regions with multiple racial/ethnic groups having excess mortality. RESULTS: The most likely area of excess mortality for blacks occurred in Dallas-Metroplex and upper east Texas areas between 1990 and 1999; for Hispanics, in central Texas between 1992 and 1996: and for non-Hispanic whites, in the upper south and west to central Texas areas between 1990 and 1996. Excess mortality persisted among all racial/ethnic groups in the identified counties. The second scan revealed that three counties in west Texas presented an excess mortality for Hispanics from 1980-2001. Many counties bore an excess mortality burden for multiple groups. There is no time trend decline in prostate cancer mortality for blacks and non-Hispanic whites in Texas. CONCLUSION: Disparities in prostate cancer mortality among racial/ethnic groups existed in Texas. Central Texas counties with excess mortality in multiple subgroups warrant further investigation.
Resumo:
Cartilage oligomeric matrix protein (COMP) is a large, homopentameric, extracellular matrix glycoprotein. Mutations in COMP cause two skeletal dysplasias: pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EMD1). These dwarfing conditions are caused by retention of misfolded mutant COMP with type IX collagen and matrilin-3 (MATN3) in the rough endoplasmic reticulum (rER) of the chondrocyte. These proteins form a matrix in the rER that continues to expand until it fills the entire cell, eventually causing cell death. Interestingly, loss of COMP in COMP null mice does not affect normal bone development or growth, suggesting that elimination of COMP (wildtype and mutant) expression may prevent PSACH. The hypothesis of these studies was that a hammerhead ribozyme could eliminate or knockdown COMP mRNA expression in PSACH chondrocytes . To test this hypothesis, a human chondrocyte model system that recapitulates the PSACH chondrocyte phenotype was developed by over-expressing mutant (mt-) COMP in normal chondrocytes using a recombinant adenovirus. Chondrocytes over-expressing mt-COMP developed giant rER cisternae containing COMP, type IX collagen and MATN3. Deconvolution microscopy and computer modeling showed that these proteins formed an ordered matrix surrounding a type II pro-collagen core. Additionally, the results show that a hammerhead ribozyme, ribozyme 56 (Ribo56) reduced over-expressed mt-COMP in COS cells and endogenous COMP in normal chondrocytes and mt-COMP in three PSACH chondrocytes cell line (with different mutations) by 40-70%. Altogether, these studies show that the PSACH cellular phenotype can be created in vitro and that the mt-COMP protein burden can be reduced by the presence of a COMP-specific ribozyme. Future studies will focus on designing ribozymes or short interfering RNA (siRNA) technologies that will result in better knockdown of COMP expression as well as the temporal constraints imposed by the PSACH phenotype. ^
Resumo:
Background: Despite almost 40 years of research into the etiology of Kawasaki Syndrome (KS), there is little research published on spatial and temporal clustering of KS cases. Previous analysis has found significant spatial and temporal clustering of cases, therefore cluster analyses were performed to substantiate these findings and provide insight into incident KS cases discharged from a pediatric tertiary care hospital. Identifying clusters from a single institution would allow for prospective analysis of risk factors and potential exposures for further insight into KS etiology. ^ Methods: A retrospective study was carried out to examine the epidemiology and distribution of patients presenting to Texas Children’s Hospital in Houston, Texas, with a diagnosis of Acute Febrile Mucocutaneous Lymph Node Syndrome (MCLS) upon discharge from January 1, 2005 to December 31, 2009. Spatial, temporal, and space-time cluster analyses were performed using the Bernoulli model with case and control event data. ^ Results: 397 of 102,761 total patients admitted to Texas Children’s Hospital had a principal or secondary diagnosis of Acute Febrile MCLS upon over the 5 year period. Demographic data for KS cases remained consistent with known disease epidemiology. Spatial, temporal, and space-time analyses of clustering using the Bernoulli model demonstrated no statistically significant clusters. ^ Discussion: Despite previous findings of spatial-temporal clustering of KS cases, there were no significant clusters of KS cases discharged from a single institution. This implicates the need for an expanded approach to conducting spatial-temporal cluster analysis and KS surveillance given the limitations of evaluating data from a single institution.^
Resumo:
Selection of division sites and coordination of cytokinesis with other cell cycle events are critical for every organism to proliferate. In E. coli, the nucleoid is proposed to exclude division from the site of the chromosome (nucleoid occlusion model). We studied the effect of the nucleoid on timing and placement of cell division. An early cell division protein, FtsZ, was used to follow development of the division septum. FtsZ forms a ring structure (Z ring) at potential division sites. The dynamics of Z ring was visualized in live cells by fusing FtsZ with a green fluorescent protein (GFP). Emanating FtsZ-GFP polymers from the constricted septum or aggregates in daughter cells were also observed, probably representing the FtsZ depolymerization and immature FtsZ nucleation processes. We next examined the nucleoid occlusion model. Mutants carrying abnormally positioned chromosomes were employed. In chromosomal partition mutants, replicated chromosomes cannot segregate. The Z ring was excluded from midcell to the edge of the nucleoid. This negative effect of nucleoids was further confirmed in replication deficient dnaA mutants, in which only a single chromosome is present in the cell center. These results suggest that the nucleoid, replicating or not, inhibits division in the area where the chromosome occupies. In addition, increasing the level of FtsZ does not overcome nucleoid inhibition. Interestingly in anucleate cells produced by both mutants, the Z ring was localized in the central part of the cell, which indicates that the nucleoid is not required for FtsZ assembly. Relaxation of chromosomes by reducing the gyrase activity or disruption of protein translation/translocation did not abolish the division inhibition capacity of the nucleoid. However, preventing transcription did compromise the nucleoid occlusion effect, leading to formation of multiple FtsZ rings above the nucleoid. In summary, we demonstrate that nucleoids negatively regulate the timing and position of division by inhibiting FtsZ assembly at unselected sites. Relief of this inhibition at midcell is coincident with the completion of DNA replication. On the other hand, FtsZ assembly does not require the nucleoid. ^
Resumo:
The notion that changes in synaptic efficacy underlie learning and memory processes is now widely accepted even if definitive proof of the synaptic plasticity and memory hypothesis is still lacking. When learning occurs, patterns of neural activity representing the occurrence of events cause changes in the strength of synaptic connections within the brain. Reactivation of these altered connections constitutes the experience of memory for these events and for other events with which they may be associated. These statements summarize a long-standing theory of memory formation that we refer to as the synaptic plasticity and memory hypothesis. Since activity-dependent synaptic plasticity is induced at appropriate synapses during memory formation, and is both necessary and sufficient for the information storage, we can speculate that a methodological study of the synapse will help us understand the mechanism of learning. Random events underlie a wide range of biological processes as diverse as genetic drift and molecular diffusion, regulation of gene expression and neural network function. Additionally spatial variability may be important especially in systems with nonlinear behavior. Since synapse is a complex biological system we expect that stochasticity as well as spatial gradients of different enzymes may be significant for induction of plasticity. ^ In that study we address the question "how important spatial and temporal aspects of synaptic plasticity may be". We developed methods to justify our basic assumptions and examined the main sources of variability of calcium dynamics. Among them, a physiological method to estimate the number of postsynaptic receptors as well as a hybrid algorithm for simulating postsynaptic calcium dynamics. Additionally we studied how synaptic geometry may enhance any possible spatial gradient of calcium dynamics and how that spatial variability affect plasticity curves. Finally, we explored the potential of structural synaptic plasticity to provide a metaplasticity mechanism specific for the synapse. ^
Resumo:
BACKGROUND: A key aspect of representations for object recognition and scene analysis in the ventral visual stream is the spatial frame of reference, be it a viewer-centered, object-centered, or scene-based coordinate system. Coordinate transforms from retinocentric space to other reference frames involve combining neural visual responses with extraretinal postural information. METHODOLOGY/PRINCIPAL FINDINGS: We examined whether such spatial information is available to anterior inferotemporal (AIT) neurons in the macaque monkey by measuring the effect of eye position on responses to a set of simple 2D shapes. We report, for the first time, a significant eye position effect in over 40% of recorded neurons with small gaze angle shifts from central fixation. Although eye position modulates responses, it does not change shape selectivity. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that spatial information is available in AIT for the representation of objects and scenes within a non-retinocentric frame of reference. More generally, the availability of spatial information in AIT calls into questions the classic dichotomy in visual processing that associates object shape processing with ventral structures such as AIT but places spatial processing in a separate anatomical stream projecting to dorsal structures.
Resumo:
It is well accepted that the hippocampus (HIP) is important for spatial and contextual memories, however, it is not clear if the entorhinal cortex (EC), the main input/output structure for the hippocampus, is also necessary for memory storage. Damage to the EC in humans results in memory deficits. However, animal studies report conflicting results on whether the EC is necessary for spatial and contextual memory. Memory consolidation requires gene expression and protein synthesis, mediated by signaling cascades and transcription factors. Extracellular-signal regulated kinase (ERK) cascade activity is necessary for long-term memory in several tasks, including those that test spatial and contextual memory. In this work, we explore the role of ERK-mediated plasticity in the EC on spatial and contextual memory. ^ To evaluate this role, post-training infusions of reversible pharmacological inhibitors specific for the ERK cascade that do not affect normal neuronal activity were targeted directly to the EC of awake, behaving animals. This technique provides spatial and temporal control over the inhibition of the ERK cascade without affecting performance during training or testing. Using the Morris water maze to study spatial memory, we found that ERK inhibition in the EC resulted in long-term memory deficits consistent with a loss of spatial strategy information. When animals were allowed to learn and consolidate a spatial strategy for solving the task prior to training and ERK inhibition, the deficit was alleviated. To study contextual memory, we trained animals in a cued fear-conditioning task and saw an increase in the activation of ERK in the EC 90 minutes following training. ERK inhibition in the EC over this time point, but not at an earlier time point, resulted in increased freezing to the context, but not to the tone, during a 48-hour retention test. In addition, animals froze maximally at the time the shock was given during training; similar to naïve animals receiving additional training, suggesting that ERK-mediated plasticity in the EC normally suppresses the temporal nature of the freezing response. These findings demonstrate that plasticity in the EC is necessary for both spatial and contextual memory, specifically in the retention of behavioral strategies. ^