4 resultados para spatial patterns
em DigitalCommons@The Texas Medical Center
Resumo:
To understand how a eukaryote achieves differential transcription of genes in precise spatial patterns, the molecular details of tissue specific expression of the Strongylocentrotus purpuratus Spec2a gene were investigated by functional studies of the cis-regulatory components in the upstream enhancer. Regional activation of Spec2a in the aboral ectoderm is conferred by a combination of activators and repressors. The positive regulators include previously identified SpOtx and a trans-regulatory factor binding at the CCAAT site in the Spec2a enhancer. The nuclear protein binding to the CCAAT box was determined to be the heterotrimeric CCAAT binding factor (SpCBF). SpCBF also mediates general activation in the ectoderm. The negative regulators consist of an oral ectoderm repressor (OER), an endoderm repressor (ENR), and an S. Purpuratus goosecoid homologue (SpGsc). OER functions to prevent expression in the oral ectoderm, while ENR is required to repress endoderm expression. SpGsc antagonizes the SpOtx function by competing for binding at SpOtx target genes in oral ectoderm, where it functions as an active repressor. Thus, SpOtx and SpGsc perform collectively to establish and maintain the oral-aboral axis. Finally, purification of ENR and OER proteins from sea urchin blastula stage nuclear extracts was performed using site-specific DNA-affmity chromatography. ^
Resumo:
A population based ecological study was conducted to identify areas with a high number of TB and HIV new diagnoses in Harris County, Texas from 2009 through 2010 by applying Geographic Information Systems to determine whether distinguished spatial patterns exist at the census tract level through the use of exploratory mapping. As of 2010, Texas has the fourth highest occurrence of new diagnoses of HIV/AIDS and TB.[31] The Texas Department of State Health Services (DSHS) has identified HIV infected persons as a high risk population for TB in Harris County.[29] In order to explore this relationship further, GIS was utilized to identify spatial trends. ^ The specific aims were to map TB and HIV new diagnoses rates and spatially identify hotspots and high value clusters at the census tract level. The potential association between HIV and TB was analyzed using spatial autocorrelation and linear regression analysis. The spatial statistics used were ArcGIS 9.3 Hotspot Analysis and Cluster and Outlier Analysis. Spatial autocorrelation was determined through Global Moran's I and linear regression analysis. ^ Hotspots and clusters of TB and HIV are located within the same spatial areas of Harris County. The areas with high value clusters and hotspots for each infection are located within the central downtown area of the city of Houston. There is an additional hotspot area of TB located directly north of I-10 and a hotspot area of HIV northeast of Interstate 610. ^ The Moran's I Index of 0.17 (Z score = 3.6 standard deviations, p-value = 0.01) suggests that TB is statistically clustered with a less than 1% chance that this pattern is due to random chance. However, there were a high number of features with no neighbors which may invalidate the statistical properties of the test. Linear regression analysis indicated that HIV new diagnoses rates (β=−0.006, SE=0.147, p=0.970) and census tracts (β=0.000, SE=0.000, p=0.866) were not significant predictors of TB new diagnoses rates. ^ Mapping products indicate that census tracts with overlapping hotspots and high value clusters of TB and HIV should be a targeted focus for prevention efforts, most particularly within central Harris County. While the statistical association was not confirmed, evidence suggests that there is a relationship between HIV and TB within this two year period.^
Resumo:
The notion that changes in synaptic efficacy underlie learning and memory processes is now widely accepted even if definitive proof of the synaptic plasticity and memory hypothesis is still lacking. When learning occurs, patterns of neural activity representing the occurrence of events cause changes in the strength of synaptic connections within the brain. Reactivation of these altered connections constitutes the experience of memory for these events and for other events with which they may be associated. These statements summarize a long-standing theory of memory formation that we refer to as the synaptic plasticity and memory hypothesis. Since activity-dependent synaptic plasticity is induced at appropriate synapses during memory formation, and is both necessary and sufficient for the information storage, we can speculate that a methodological study of the synapse will help us understand the mechanism of learning. Random events underlie a wide range of biological processes as diverse as genetic drift and molecular diffusion, regulation of gene expression and neural network function. Additionally spatial variability may be important especially in systems with nonlinear behavior. Since synapse is a complex biological system we expect that stochasticity as well as spatial gradients of different enzymes may be significant for induction of plasticity. ^ In that study we address the question "how important spatial and temporal aspects of synaptic plasticity may be". We developed methods to justify our basic assumptions and examined the main sources of variability of calcium dynamics. Among them, a physiological method to estimate the number of postsynaptic receptors as well as a hybrid algorithm for simulating postsynaptic calcium dynamics. Additionally we studied how synaptic geometry may enhance any possible spatial gradient of calcium dynamics and how that spatial variability affect plasticity curves. Finally, we explored the potential of structural synaptic plasticity to provide a metaplasticity mechanism specific for the synapse. ^
Resumo:
Scholars have found that socioeconomic status was one of the key factors that influenced early-stage lung cancer incidence rates in a variety of regions. This thesis examined the association between median household income and lung cancer incidence rates in Texas counties. A total of 254 individual counties in Texas with corresponding lung cancer incidence rates from 2004 to 2008 and median household incomes in 2006 were collected from the National Cancer Institute Surveillance System. A simple linear model and spatial linear models with two structures, Simultaneous Autoregressive Structure (SAR) and Conditional Autoregressive Structure (CAR), were used to link median household income and lung cancer incidence rates in Texas. The residuals of the spatial linear models were analyzed with Moran's I and Geary's C statistics, and the statistical results were used to detect similar lung cancer incidence rate clusters and disease patterns in Texas.^