2 resultados para spatial j-test

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well accepted that the hippocampus (HIP) is important for spatial and contextual memories, however, it is not clear if the entorhinal cortex (EC), the main input/output structure for the hippocampus, is also necessary for memory storage. Damage to the EC in humans results in memory deficits. However, animal studies report conflicting results on whether the EC is necessary for spatial and contextual memory. Memory consolidation requires gene expression and protein synthesis, mediated by signaling cascades and transcription factors. Extracellular-signal regulated kinase (ERK) cascade activity is necessary for long-term memory in several tasks, including those that test spatial and contextual memory. In this work, we explore the role of ERK-mediated plasticity in the EC on spatial and contextual memory. ^ To evaluate this role, post-training infusions of reversible pharmacological inhibitors specific for the ERK cascade that do not affect normal neuronal activity were targeted directly to the EC of awake, behaving animals. This technique provides spatial and temporal control over the inhibition of the ERK cascade without affecting performance during training or testing. Using the Morris water maze to study spatial memory, we found that ERK inhibition in the EC resulted in long-term memory deficits consistent with a loss of spatial strategy information. When animals were allowed to learn and consolidate a spatial strategy for solving the task prior to training and ERK inhibition, the deficit was alleviated. To study contextual memory, we trained animals in a cued fear-conditioning task and saw an increase in the activation of ERK in the EC 90 minutes following training. ERK inhibition in the EC over this time point, but not at an earlier time point, resulted in increased freezing to the context, but not to the tone, during a 48-hour retention test. In addition, animals froze maximally at the time the shock was given during training; similar to naïve animals receiving additional training, suggesting that ERK-mediated plasticity in the EC normally suppresses the temporal nature of the freezing response. These findings demonstrate that plasticity in the EC is necessary for both spatial and contextual memory, specifically in the retention of behavioral strategies. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the administration-time-dependent effects of a stimulant (Dexedrine 5-mg), a sleep-inducer (Halcion 0.25-mg) and placebo (control) on human performance. The investigation was conducted on 12 diurnally active (0700-2300) male adults (23-38 yrs) using a double-blind, randomized sixway-crossover three-treatment, two-timepoint (0830 vs 2030) design. Performance tests were conducted hourly during sleepless 13-hour studies using a computer generated, controlled and scored multi-task cognitive performance assessment battery (PAB) developed at the Walter Reed Army Institute of Research. Specific tests were Simple and Choice Reaction Time, Serial Addition/Subtraction, Spatial Orientation, Logical Reasoning, Time Estimation, Response Timing and the Stanford Sleepiness Scale. The major index of performance was "Throughput", a combined measure of speed and accuracy.^ For the Placebo condition, Single and Group Cosinor Analysis documented circadian rhythms in cognitive performance for the majority of tests, both for individuals and for the group. Performance was best around 1830-2030 and most variable around 0530-0700 when sleepiness was greatest (0300).^ Morning Dexedrine dosing marginally enhanced performance an average of 3% with reference to the corresponding in time control level. Dexedrine AM also increased alertness by 10% over the AM control. Dexedrine PM failed to improve performance with reference to the corresponding PM control baseline. With regard to AM and PM Dexedrine administrations, AM performance was 6% better with subjects 25% more alert.^ Morning Halcion administration caused a 7% performance decrement and 16% increase in sleepiness and a 13% decrement and 10% increase in sleepiness when administered in the evening compared to corresponding in time control data. Performance was 9% worse and sleepiness 24% greater after evening versus morning Halcion administration.^ These results suggest that for evening Halcion dosing, the overnight sleep deprivation occurring in coincidence with the nadir in performance due to circadian rhythmicity together with the CNS depressant effects combine to produce performance degradation. For Dexedrine, morning administration resulted in only marginal performance enhancement; Dexedrine in the evening was less effective, suggesting the 5-mg dose level may be too low to counteract the partial sleep deprivation and nocturnal nadir in performance. ^