15 resultados para small intestine mucosa

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to visualize and localize the sheep antimicrobials, beta-defensins 1, 2, and 3, (SBD-1, SBD-2, SBD-3), sheep neutrophil defensin alpha (SNP-1), and the cathelicidin LL-37 in sheep small intestine after burn injury, our hypothesis being that these compounds would be upregulated in an effort to overcome a compromised endothelial lining. Response to burn injury includes the release of proinflammatory cytokines and systemic immune suppression that, if untreated, can progress to multiple organ failure and death, so protective mechanisms have to be initiated and implemented. METHODS: Tissue sections were probed with antibodies to the antimicrobials and then visualized with fluorescently labeled secondary antibodies and subjected to fluorescence deconvolution microscopy and image reconstruction. RESULTS: In both the sham and burn samples, all the aforementioned antimicrobials were seen in each of the layers of small intestine, the highest concentration being localized to the epithelium. SBD-2, SBD-3, and SNP-1 were upregulated in both enterocytes and Paneth cells, while SNP-1 and LL-37 showed increases in both the inner circular and outer longitudinal muscle layers of the muscularis externa following burn injury. Each of the defensins, except SBD-1, was also seen in between the muscle layers of the externa and while burn caused slight increases of SBD-2, SBD-3, and SNP-1 in this location, LL-37 content was significantly decreased. CONCLUSION: That while each of these human antimicrobials is present in multiple layers of sheep small intestine, SBD-2, SBD-3, SNP-1, and LL-37 are upregulated in the specific layers of the small intestine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most tissue-invasive parasitic helminths prime for type 1 hypersensitivity or anaphylaxis during some phase of their life cycles. A prototype in this regard is the nematode Trichinella spiralis. Blood protozoa capable of tissue invasion, such as Trypanosoma brucei, might also be expected to prime for the expression of anaphylaxis. However, this response is usually absent in protozoal infections. The hypothesis tested was that failure of hosts infected with T.brucei to express anaphylaxis is related to this parasite's ability to selectively down-regulate immunoglobulin E (IgE) production, and not to an innate lack of allergenicity on the part of T.brucei-derived antigens. This hypothesis was tested by studying in the intestine of rats, antigen-induced Cl$\sp-$ secretion, which results from a local anaphylactic response mediated by IgE and mucosal mast cells. The Cl$\sp-$ secretory response can be primed either by infection with T.spiralis or by the parenteral administration of antigen. Anaphylaxis-induced Cl$\sp-$ secretion is expressed in vitro, and can be quantified electrophysiologically, as a change in transmural short-circuit current when sensitized intestine is mounted in Ussing chambers and challenged with the sensitizing antigen.^ Rats injected parenterally with trypanosome antigen elicited intestinal anaphylaxis in response to antigenic challenge. In contrast, the intestine of rats infected with T.brucei failed to respond to challenge with trypanosome antigen. Infection with T.brucei also suppressed antigen-induced Cl$\sp-$ secretion in rats sensitized and challenged with various antigens, including T.spiralis antigen. However, T.brucei infection did not inhibit the anaphylactic response in rats concomitantly infected with T.spiralis. Relative to the anaphylactic mediators, T.brucei infection blocked production of IgE in rats parenterally injected with antigen but not in T.spiralis-infected hosts. Also, the mucosal mastocytosis normally associated with trichinosis was unaffected by the trypanosome infection. These results support the conclusion that the failure to express anaphylaxis-mediated Cl$\sp-$ secretion in T.brucei infected rats, is due to this protozoan's ability to inhibit IgE production and not to the lack of allergenicity of trypanosome antigens. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The injurious effect of nonsteroidal anti-inflammatory drugs (NSAIDs) in the small intestine was not appreciated until the widespread use of capsule endoscopy. Animal studies found that NSAID-induced small intestinal injury depends on the ability of these drugs to be secreted into the bile. Because the individual toxicity of amphiphilic bile acids and NSAIDs directly correlates with their interactions with phospholipid membranes, we propose that the presence of both NSAIDs and bile acids alters their individual physicochemical properties and enhances the disruptive effect on cell membranes and overall cytotoxicity. We utilized in vitro gastric AGS and intestinal IEC-6 cells and found that combinations of bile acid, deoxycholic acid (DC), taurodeoxycholic acid, glycodeoxycholic acid, and the NSAID indomethacin (Indo) significantly increased cell plasma membrane permeability and became more cytotoxic than these agents alone. We confirmed this finding by measuring liposome permeability and intramembrane packing in synthetic model membranes exposed to DC, Indo, or combinations of both agents. By measuring physicochemical parameters, such as fluorescence resonance energy transfer and membrane surface charge, we found that Indo associated with phosphatidylcholine and promoted the molecular aggregation of DC and potential formation of larger and isolated bile acid complexes within either biomembranes or bile acid-lipid mixed micelles, which leads to membrane disruption. In this study, we demonstrated increased cytotoxicity of combinations of bile acid and NSAID and provided a molecular mechanism for the observed toxicity. This mechanism potentially contributes to the NSAID-induced injury in the small bowel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To determine alterations in quantities and distributions of natural antimicrobials following ischemia-reperfusion injury. We hypothesized that these compounds would be upregulated in areas of small intestine where changes in permeability and cellular disruption were likely and where protective mechanisms would be initiated. Methods: Rats with ischemia-reperfusion underwent superior mesenteric artery clamping and reperfusion. Shams were subjected to laparotomy but no clamping. Ileum and jejunum were harvested and sectioned, and subjected to fluorescence deconvolution microscopy for determinations of content and localization of rat beta defensins, 1, 2, 3; rat neutrophil protein-1; and cathelicidin LL-37. Modeling was performed to determine cellular location of antimicrobials. Results: Ischemia-reperfusion increased neutrophil defensin alpha (RNP-1) in jejunum; rat beta defensin 1 was increased 2-fold in ileal mucosa and slightly reduced in jejunal mucosa; rat beta defensin 2 was reduced by ischemia-reperfusion in ileum, but slightly increased in jejunum; rat beta defensin 3 was concentrated in the muscularis externa and myenteric plexus of the jejunum; ischemia-reperfusion did not alter cathelicidin LL-37 content in the small intestine, although a greater concentration was seen in jejunum compared with ileum. Conclusion: Ischemia-reperfusion injury caused changes in antimicrobial content in defined areas, and these different regulations might reflect the specific roles of jejunum versus ileum.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

After intestinal bypass, the mucosa of the in-continuity segment (ICS) of intestine undergoes adaptive hyperplasia which results in increased absorptive function per length of intestine. In the present study, 70% of the small intestine was bypassed in rats to determine if intestinal muscle also adapts after bypass. To determine the effect of bypass on intestinal transit, a poorly absorbed marker substance was introduced into the orad portion of the ICS or bypassed loop (BL). Significantly less marker (P < 0.05) was passed from the ICS into the colon in 50 minutes in fed rats at 14 days compared to at 3 days after bypass. In 150 minutes there was more marker in the colon of fed rats at 3 and 14 days but not at 35 days after bypass than in control. In the BL, transit was slowed significantly in fed rats at 3 and 35 days and in fasted rats at 3 days but not 35 days after bypass compared to control. The circular muscle from the BL and the distal but not proximal portion of the ICS developed significantly more carbachol-stimulated force in vitro at 35 but not 3 days after bypass compared to unoperated but not sham-operated controls. At 35 days after bypass, the muscle layers had a greater muscle wet weight and protein content compared to both unoperated and sham-operated control in both the proximal and distal portions of the ICS. Similarly, there was more muscle in histological sections of the BL and distal portion of the ICS at 35 days after bypass compared to either control. Nonetheless, at 35 days after bypass actomyosin content as a fraction of muscle weight or total protein content was not different from control. The results support the hypothesis that there was a functional adaptation, i.e. slowed transit in fed rats that allowed more time for absorption. Feeding caused slowed transit in the BL as well as the ICS. Other results suggest that an increased amount of functional muscle formed in the distal portion of the ICS after bypass. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Motility responses of the small intestine of iNOS deficient mice (iNOS −/−) and their wildtype littermates (iNOS+/+) to the inflammatory challenge of lipopolysaccharide (LPS) were investigated. LPS administration failed to attenuate intestinal transit in iNOS−/− mice but depressed transit in their iNOS+/+ littermates. Supporting an inhibitory role for sustained nitric oxide (NO) synthesis in the regulation of intestinal motility during inflammation, iNOS immunoreactivity was upregulated in all regions of the small intestine of iNOS+/+ mice. In contrast, neuronal NOS was barely affected. Cyclooxygenase activation was determined by prostaglandin E2 (PGE2) concentration. Following LPS challenge, PGE2 levels were elevated in all intestinal segments in both animal groups. Moreover, COX-1 and COX-2 protein levels were elevated in iNOS+/+ mice in response to LPS, while COX-2 levels were similarly increased in iNOS −/− intestine. However, no apparent relationship was observed between increased prostaglandin concentrations and attenuated intestinal transit. The presence of heme oxygenase 1 (HO-1) in the murine small intestine was also investigated. In both animal groups HO-1 immunoreactivity in the proximal intestine increased in response to treatment, while the constitutive protein levels detected in the middle and distal intestine were unresponsive to LPS administration. No apparent correlation of HO-1 to the suppression of small intestinal motility induced by LPS administration was detected. The presence of S-nitrosylated contractile proteins in the small intestine was determined. γ-smooth muscle actin was basally nitrosylated as well as in response to LPS, but myosin light chain kinase and myosin regulatory chain (MLC20) were not. In conclusion, in a model of acute intestinal inflammation, iNOS-produced NO plays a significant role in suppressing small intestinal motility while nNOS, COX-1, COX-2 and HO-1 do not participate in this event. S-nitrosylation of γ-smooth muscle actin is associated with elevated levels of nitric oxide in the smooth muscle of murine small intestine. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two genetically variant forms of rat "acid" beta-galactosidase were found to differ in isoelectric point and pH dependence, but not in thermostability or sensitivity to inhibition by p-mercuribenzoate (PMB). The results of two backcrosses and an intercross indicated that the isoelectric focusing phenotypes are controlled by two codominant alleles at a single autosomal locus, for which we propose the name Glb-1. No significant linkage between Glb-1 and albino (LG I), brown (LG II), or hooded (LG VI) was observed. Strain-specific differences in total levels of kidney beta-galactosidase were detected, but it is not yet known whether the variation is controlled by genes linked to Glb-1. Experiments in which organ homogenates were incubated with neuraminidase indicated that the genetically variant forms do not result from differences in sialylation, though sialylation does appear to be largely responsible for the presence of multiple bands within each phenotype and for differences in the banding patterns of beta-galactosidases derived from different organs. The beta-galactosidase present in the bands used for Glb-1 typing resembles human GM1 gangliosidase (GLB1) with respect to pH optimum, substrate specificity, and susceptibility to inhibition by PMB. It also appears that Glb-1 is homologous with the Bgl-e locus of the mouse. In rats as in mice the genetically variant bands of beta-galactosidase are active at acid pH and have relatively high isoelectric points. In both species these bands are readily detectable in kidney homogenates, and can be revealed in homogenates of liver or spleen following treatment with neuraminidase. The presence of the same beta-galactosidase bands in homogenates of rat kidney and small intestine as well as in neuraminidase-treated homogenates of liver and spleen suggests that the Glb-1 variants differ by one or more point mutations in the structural gene for "acid" beta-galactosidase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inhibition of local host immune reactions is one mechanism contributing to tumor progression. To determine if alterations in local immune functioning occur during colon carcinogenesis, a model mucosal immune response, type I hypersensitivity against the intestinal parasite Trichinella spiralis, was first characterized in normal mice and then examined during experimental colon carcinogenesis. Segments of sensitized colon mounted in Ussing chambers and challenged with T. spiralis-derived antigen resulted in a rise in short-circuit current ($\rm\Delta I\sb{sc}$) that was antigen-specific and inhibited by furosemide, implicating epithelial Cl$\sp-$ secretion as the ionic mechanism. The immune-regulated Cl$\sp-$ secretion by colonic epithelial cells required the presence of mast cells with surface IgE. Inhibition of potential anaphylactic mediators with various pharmacological agents in vitro implicated prostaglandins and leukotrienes as the principal mediators of the antigen-induced $\rm\Delta I\sb{sc}$, with 5-hydroxytryptamine also playing a role. Distal colon from immune mice fed an aspirin-containing diet (800 mg/kg powdered diet) ad libitum for 6 wk had a decreased response to antigen, confirming the major role of prostaglandins in generating the colonic I$\sb{\rm sc}$. To determine the effects of early stages of colon carcinogenesis on this mucosal immune response, mice were immunized with T. spiralis 1 day after or 8 wk prior to the first of 6 weekly injections of the procarcinogen 1,2-dimethylhydrazine (DMH). Responsiveness to antigenic challenge was suppressed in the distal colon 4-6 wk after the final injection of DMH. One injection of DMH was not sufficient to inhibit antigen responsiveness. The colonic epithelium remained sensitive to direct stimulation by exogenous Cl$\sp-$ secretagogues. Decreased antigen-induced $\rm\Delta I\sb{sc}$ in the distal colon was not due to systemic immune suppression by DMH, as the proximal colon and jejunum maintained responsiveness to antigen. Also, rejection of a secondary T. spiralis infection from the small intestine was not altered. Tumors eventually developed 25-30 wk after the final injection of DMH only in the distal portions of the colon. These results suggest that early stages of DMH-induced colon carcinogenesis manipulate the microenvironment such that mucosal immune function, as measured by immune-regulated Cl$\sp-$ secretion, is suppressed in the distal colon, but not in other regions of the gut. Future elucidation of the mechanisms by which this localized inhibition of immune-mediated ion transport occurs may provide possible clues to the microenvironmental changes necessary for tumor progression in the distal colon. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The etiological role of enterotoxigenic E. coli (ETEC) in diarrheal diseases of man and domestic animals is firmly established. Besides the production of enterotoxins (ST and LT), ETEC produces other important virulence factors; the colonization factor antigens (CFAs). CFAs mediate the attachment of ETEC to the epithelial cells of the small intestine, and this favors colonization by the bacteria and facilitates delivery of the enterotoxins to the intestinal cells.^ The production of enterotoxin and CFA is determined by plasmids and has been found to be restricted to a select number of E. coli serotypes.^ In this work, plasmid DNA analysis was performed in twenty-three CFA/II-producing enterotoxigenic Escherichia coli strains and their spontaneous CFA/II-negative derivatives. In some cases, strains lost the high molecular weight plasmid and also the ability to produce CFA/II, ST and LT. In other cases there was a deletion of the plasmid, which produced strains that were CFA/II('-), ST('-), LT('-) or CFA/II('-), ST('+), LT('+).^ The CFA/II plasmid from strain PB-176 (06:H16:CFA/II('+), ST('+), LT('+)) was transferred by transformation into E. coli K12 with concomitant transfer of the three characteristics: CFA/II, ST and LT.^ A physical map of the prototype CFA/II:ST:LT (pMEP60) plasmid was constructed by restriction endonuclease analysis and compared to plasmids from three other CFA/II-producing strains. A CFA/II-negative (but ST and LT positive) deletion derivative of pMEP60 (pMEP30) was also included in the map. The four CFA/II plasmids analyzed had a common region of approximately 30 kilobase pairs. The toxin genes were approximately 5 kbp apart and about 20 kbp from the common region. The information given by this physical map could be of great value when constructing a clone that will express the CFA/II genes but not the toxin genes. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytochrome P450s, a superfamily of heme enzymes found in most living organisms. They are responsible for metabolism of many therapeutic drugs, industrial pollutants, carcinogens, and additives to foodstuffs, as well as some endogenous compounds including fatty acids and steroids. First pass drug metabolism studies represent mainly liver and small intestine elimination, and are viewed as the standard to predict therapeutic outcome. However, drug plasma levels determined after administration do not always correlate with therapeutic efficacy of the drug. Therefore, a possible explanation may come by understanding drug metabolism in extrahepatic tissues and/or at the site of drug action. Identification and characterization of novel tissue specific isoforms of P450 generated by alternative splicing of known P450 genes or as yet unidentified genes is essential to predict pharmacological outcome of drugs or the fate of a carcinogen that act at sites remote from liver. ^ Using RT-PCR, brain-specific cytochrome P450s were detected in samples of human autopsy brain. So far, we have identified two human brain variants including P450 2D7 and P450 1A1. We have shown the presence of the P450 1A1 brain specific splice variant in African Americans, Caucasians and Indians albeit different patterns of liver to brain variant ratio were seen distributed throughout each population. Interestingly, the splice variant was detected only in the brain but not in any other tissues from the same individual. Homology modeling was used to compare the variant 3D structure to the liver form structure and differences in the substrate access channels and substrate binding sites were noticed. Automated computational docking was used to predict the metabolic fate of the potent carcinogenic substrate, benzo[a]pyrene. P450 1A1 brain variant showed no binding orientations that could produce the active metabolite, whereas P450 1A1 liver form did reveal orientations capable of generating active carcinogenic product. In vitro P32 labeling studies verified the docking predictions. Therefore, the data support the hypothesis that P450 brain splice variants mediate the metabolism of xenobiotics by mechanisms distinct from the well-studied liver counterparts. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is generally believed that 1,25(OH)2D3, bound to its receptor (VDR) contributes to calcium homeostasis by regulating active calcium absorption in the proximal small intestine. However, studying patients with hereditary vitamin D-resistant rickets (HVDRR) provided investigators with a better understanding of VDR's role in calcium homeostasis. HVDRR patients have inactivating mutations in the VDR, and as a consequence they develop hypocalcemia, hyperparathyroidism and severe rickets. However, these phenotypes can be corrected if the patients are given IV infusions of calcium or dietary calcium. This raises the question of what is the physiological significance of VDR-regulated active calcium absorption if calcium homeostasis can be restored independently of the VDR. ^ In order to distinguish the contribution of VDR in the proximal small intestine to overall calcium homeostasis, I generated transgenic mice expressing the human VDR (hVDR) exclusively in the proximal small intestine of mVDR-/- mice by using an hVDR-expressing transgene driven by the duodenal-specific adenosine deaminase enhancer (hVDR+/mVDR-/-). hVDR+/mVDR-/- mice expressed transcriptionally active hVDR only in the proximal small intestine and responded to 1,25(OH)2D3 by up-regulating expression of TRPV6 and calbindin D9K, genes involved in calcium absorption. Furthermore, ligated duodenal loop assays determined that calcium absorption in hVDR+/mVDR-/- mice was as responsive to 1,25(OH)2D3 as in WT mice. Despite having a functional hVDR in the proximal small intestine, hVDR+/mVDR-/- mice were hypocalcemic, had hyperparathyroidism, and were rachitic when fed a normal rodent diet at weaning, as were the mVDR-/- mice. However, when fed a high calcium, phosphorus, and lactose diet (rescue diet), the hVDR+/mVDR-/- mice responded more effectively than the mVDR-/- mice by down-regulation of parathyroid hormone production and by a greater increase in bone mineralization. Furthermore, when three-month-old rachitic mice were fed a rescue diet for 3 weeks, serum calcium and bone mineral content were normalized in hVDR+/mVDR-/- mice, but not in mVDR-/- mice. ^ In conclusion, hVDR expression enabled young mice to better use the rescue diet than mVDR-/- mice. Expression of transgenic hVDR also protected the ability of older mice to respond to the rescue diet despite the absence of the VDR elsewhere in the intestinal tract. I propose that because hVDR+/mVDR-/- mice responded better than mVDR-/- mice to the rescue diet, it is likely that VDR expression in the proximal small intestine is necessary in nutritional (insufficient dietary calcium) and physiological (age) conditions when passive calcium absorption is inadequate. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective. Gastrointestinal Stromal Tumors (GISTs) are rare mesenchymal tumors of the gastrointestinal (GI) tract with spindled cell, epithelioid, or occasionally pleomorphic morphology. The primary objective of this paper is to describe the demographic and clinical characteristics and survival among GIST patients registered at the University of Texas M.D. Anderson Cancer Center (MDACC). ^ Methods. This cohort study includes 783 consecutive patients diagnosed with GIST from 1995 to 2007. Demographic, clinical and survival information were obtained from the MDACC cancer registry. ^ Statistical Analysis. Kaplan-Meier survival curves, univariate and multivariate Cox proportional hazards analysis were conducted to estimate survival and identify prognostic clinical factors associated with survival. Results. The age at diagnosis of MDACC GIST cases ranged from 17 to 91 with a mean of 57 years and a male-to-female ratio of 1.3:1. The racial distribution was whites 77%, African-Americans 9.5%, Hispanics 9.3% and other races 4.2%. Fifty per cent of the GISTs arose from stomach, 35% small intestine, 7% retroperitoneal space, 6% colorectal and 2% were omentum and mesentery. About half of the tumors were less than 10 cm in size. Fifty eight per cent of the tumors were localized whereas 36% were metastatic. MDACC GIST patients were generally comparable to SEER patients, but, on the average, were 7 years younger than SEER patients and were predominantly whites. ^ Stratification of 783 GIST cases by year of diagnosis based on the introduction of imatinib treatment in 2000 revealed that 60% of the GIST cases were first diagnosed between 2000 and 2007 whereas, 40% were first diagnosed between 1995 and 1999. There was a significant difference between the two cohorts in the distribution of race, GIST symptom, tumor size, tumor site, and stage of the tumor at diagnosis. The 1- and 5-year survival was 93% and 59% in the 1995–2007 cohort. Multivariate Cox regression analysis identified age at diagnosis (p<0.001), female sex (p=0.047), tumor size (p=0.07), multiple cancers (p=0.002), and GIST diagnosed between 2000 and 2007 (p<0.001) were significantly associated with survival. Approximately, 58% of the cases were treated with imatinib whereas 42% did not receive imatinib in 2000–2005 cohort. There was a significant difference in survival between imatinib and non-imatinib groups and in the distribution of tumor size categories, stage of the tumor at diagnosis and cancers before the diagnosis of GIST. The 1- and 5-year survival for imatinib patients was 99% and 73% and was 91% and 63% for non-imatinib patients. Multivariate Cox regression analysis of the 2000–2007 cohort identified, age at diagnosis and tumor stage as possible prognostic factors associated with survival.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prevalence of antirotavirus antibodies in chickens and turkeys in the Gonzales, Texas and Llano, Texas areas was studied. Caged layer chicken flocks were found to have a prevalence of 64% when samples were taken randomly. This compares to 45% in chicken broiler breeder flocks and 92% in turkey breeding flocks. The natural occurrence of turkey rotavirus infection in two separate field studies showed an increase in mortality varying from 9% to 45% above expected death losses. Clinically, pasted vents, lacitude, and general malaise were noted in affected poults. Lesions noted on post mortem examination were; slight ballooning of the small intestine, excessively large ceca, and mild hyperemia of the small and large intestines.^ The use of maternal antibody from simian rotavirus immunized chickens' eggs for preventing murine rotavirus infection in infant mice was investigated. There was a reduction from 91% to 15% incidence when infant mice were treated twice daily with egg yolk immunoglobulin.^ The need for a convenient, easily grown and rapidly reproducing model for avian and mammalian rotaviruses led to the use of coturnix chicks. The turkey rotavirus was adapted to the quail chicks be serial passage. Transmission and scanning electron microscopy as well as micropathological methods were used in the study of the pathogenesis of rotavirus infection in quail and infant mice. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Clostridium difficile is the leading definable cause of nosocomial diarrhea worldwide due to its virulence, multi-drug resistance, spore-forming ability, and environmental persistence. The incidence of C. difficile infection (CDI) has been increasing exponentially in the last decade. Virulent strains of C. difficile produce either toxin A and/or toxin B, which are essential for the pathogenesis of this bacterium. Current methods for diagnosing CDI are mostly qualitative tests that detect the bacterium, the toxins, or the toxin genes. These methods do not differentiate virulent C. difficile strains that produce active toxins from non-virulent strains that do not produce toxins or produce inactive toxins. Based on the knowledge that C. difficile toxins A and B cleave a substrate that is stereochemically similar to the native substrate of the toxins, uridine diphosphoglucose, a quantitative, cost-efficient assay, the Cdifftox activity assay, was developed to measure C. difficile toxin activity. The concept behind the activity assay was modified to develop a novel, rapid, sensitive, and specific assay for C. difficile toxins in the form of a selective and differential agar plate culture medium, the Cdifftox Plate assay (CDPA). This assay combines in a single step the specific identification of C. difficile strains and the detection of active toxin(s). The CDPA was determined to be extremely accurate (99.8% effective) at detecting toxin-producing strains based on the analysis of 528 C. difficile isolates selected from 50 tissue culture cytotoxicity assay-positive clinical stool samples. This new assay advances and improves the culture methodology in that only C. difficile strains will grow on this medium and virulent strains producing active toxins can be differentiated from non-virulent strains. This new method reduces the time and effort required to isolate and confirm toxin-producing C. difficile strains and provides a clinical isolate for antibiotic susceptibility testing and strain typing. The Cdifftox activity assay was used to screen for inhibitors of toxin activity. Physiological levels of the common human conjugated bile salt, taurocholate, was found to inhibit toxin A and B in vitro activities. When co-incubated ex vivo with purified toxin B, taurocholate protected Caco-2 colonic epithelial cells from the damaging effects of the toxin. Furthermore, using a caspase-3 detection assay, taurocholate reduced the extent of toxin B-induced Caco-2 cell apoptosis. These results suggest that bile salts can be effective in protecting the gut epithelium from C. difficile toxin damage, thus, the delivery of physiologic amounts of taurocholate to the colon, where it is normally in low concentration, could be useful in CDI treatment. These findings may help to explain why bile rich small intestine is spared damage in CDI, while the bile salt poor colon is vulnerable in CDI. Toxin synthesis in C. difficile occurs during the stationary phase, but little is known about the regulation of these toxins. It was hypothesized that C. difficile toxin synthesis is regulated by a quorum sensing mechanism. Two lines of evidence supported this hypothesis. First, a small (KDa), diffusible, heat-stable toxin-inducing activity accumulates in the medium of high-density C. difficile cells. This conditioned medium when incubated with low-density log-phase cells causes them to produce toxin early (2-4 hrs instead of 12-16 hrs) and at elevated levels when compared with cells grown in fresh medium. These data suggested that C. difficile cells extracellularly release an inducing molecule during growth that is able to activate toxin synthesis prematurely and demonstrates for the first time that toxin synthesis in C. difficile is regulated by quorum signaling. Second, this toxin-inducing activity was partially purified from high-density stationary-phase culture supernatant fluid by HPLC and confirmed to induce early toxin synthesis, even in C. difficile virulent strains that over-produce the toxins. Mass spectrometry analysis of the purified toxin-inducing fraction from HPLC revealed a cyclic compound with a mass of 655.8 Da. It is anticipated that identification of this toxin-inducing compound will advance our understanding of the mechanism involved in the quorum-dependent regulation of C. difficile toxin synthesis. This finding should lead to the development of even more sensitive tests to diagnose CDI and may lead to the discovery of promising novel therapeutic targets that could be harnessed for the treatment C. difficile infections.