30 resultados para single nucleotide polymorphisms

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease caused by germline mutations in DNA mismatch repair(MMR) genes. The nucleotide excision repair(NER) pathway plays a very important role in cancer development. We systematically studied interactions between NER and MMR genes to identify NER gene single nucleotide polymorphism (SNP) risk factors that modify the effect of MMR mutations on risk for cancer in HNPCC. We analyzed data from polymorphisms in 10 NER genes that had been genotyped in HNPCC patients that carry MSH2 and MLH1 gene mutations. The influence of the NER gene SNPs on time to onset of colorectal cancer (CRC) was assessed using survival analysis and a semiparametric proportional hazard model. We found the median age of onset for CRC among MMR mutation carriers with the ERCC1 mutation was 3.9 years earlier than patients with wildtype ERCC1(median 47.7 vs 51.6, log-rank test p=0.035). The influence of Rad23B A249V SNP on age of onset of HNPCC is age dependent (likelihood ratio test p=0.0056). Interestingly, using the likelihood ratio test, we also found evidence of genetic interactions between the MMR gene mutations and SNPs in ERCC1 gene(C8092A) and XPG/ERCC5 gene(D1104H) with p-values of 0.004 and 0.042, respectively. An assessment using tree structured survival analysis (TSSA) showed distinct gene interactions in MLH1 mutation carriers and MSH2 mutation carriers. ERCC1 SNP genotypes greatly modified the age onset of HNPCC in MSH2 mutation carriers, while no effect was detected in MLH1 mutation carriers. Given the NER genes in this study play different roles in NER pathway, they may have distinct influences on the development of HNPCC. The findings of this study are very important for elucidation of the molecular mechanism of colon cancer development and for understanding why some mutation carriers of the MSH2 and MLH1 gene develop CRC early and others never develop CRC. Overall, the findings also have important implications for the development of early detection strategies and prevention as well as understanding the mechanism of colorectal carcinogenesis in HNPCC. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic sclerosis (SSc) or Scleroderma is a complex disease and its etiopathogenesis remains unelucidated. Fibrosis in multiple organs is a key feature of SSc and studies have shown that transforming growth factor-β (TGF-β) pathway has a crucial role in fibrotic responses. For a complex disease such as SSc, expression quantitative trait loci (eQTL) analysis is a powerful tool for identifying genetic variations that affect expression of genes involved in this disease. In this study, a multilevel model is described to perform a multivariate eQTL for identifying genetic variation (SNPs) specifically associated with the expression of three members of TGF-β pathway, CTGF, SPARC and COL3A1. The uniqueness of this model is that all three genes were included in one model, rather than one gene being examined at a time. A protein might contribute to multiple pathways and this approach allows the identification of important genetic variations linked to multiple genes belonging to the same pathway. In this study, 29 SNPs were identified and 16 of them located in known genes. Exploring the roles of these genes in TGF-β regulation will help elucidate the etiology of SSc, which will in turn help to better manage this complex disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With hundreds of single nucleotide polymorphisms (SNPs) in a candidate gene and millions of SNPs across the genome, selecting an informative subset of SNPs to maximize the ability to detect genotype-phenotype association is of great interest and importance. In addition, with a large number of SNPs, analytic methods are needed that allow investigators to control the false positive rate resulting from large numbers of SNP genotype-phenotype analyses. This dissertation uses simulated data to explore methods for selecting SNPs for genotype-phenotype association studies. I examined the pattern of linkage disequilibrium (LD) across a candidate gene region and used this pattern to aid in localizing a disease-influencing mutation. The results indicate that the r2 measure of linkage disequilibrium is preferred over the common D′ measure for use in genotype-phenotype association studies. Using step-wise linear regression, the best predictor of the quantitative trait was not usually the single functional mutation. Rather it was a SNP that was in high linkage disequilibrium with the functional mutation. Next, I compared three strategies for selecting SNPs for application to phenotype association studies: based on measures of linkage disequilibrium, based on a measure of haplotype diversity, and random selection. The results demonstrate that SNPs selected based on maximum haplotype diversity are more informative and yield higher power than randomly selected SNPs or SNPs selected based on low pair-wise LD. The data also indicate that for genes with small contribution to the phenotype, it is more prudent for investigators to increase their sample size than to continuously increase the number of SNPs in order to improve statistical power. When typing large numbers of SNPs, researchers are faced with the challenge of utilizing an appropriate statistical method that controls the type I error rate while maintaining adequate power. We show that an empirical genotype based multi-locus global test that uses permutation testing to investigate the null distribution of the maximum test statistic maintains a desired overall type I error rate while not overly sacrificing statistical power. The results also show that when the penetrance model is simple the multi-locus global test does as well or better than the haplotype analysis. However, for more complex models, haplotype analyses offer advantages. The results of this dissertation will be of utility to human geneticists designing large-scale multi-locus genotype-phenotype association studies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Up to 60% of U.S. visitors to Mexico develop traveler's diarrhea (TD), mostly due to enterotoxigenic Escherichia coli (ETEC) strains that produce heat-labile (LT) and/or heat-stable (ST) enterotoxins. Distinct single-nucleotide polymorphisms (SNPs) within the interleukin-10 (IL-10) promoter have been associated with high, intermediate, or low production of IL-10. We conducted a prospective study to investigate the association of SNPs in the IL-10 promoter and the occurrence of TD in ETEC LT-exposed travelers. Sera from U.S. travelers to Mexico collected on arrival and departure were studied for ETEC LT seroconversion by using cholera toxin as the antigen. Pyrosequencing was performed to genotype IL-10 SNPs. Stools from subjects who developed diarrhea were also studied for other enteropathogens. One hundred twenty-one of 569 (21.3%) travelers seroconverted to ETEC LT, and among them 75 (62%) developed diarrhea. Symptomatic seroconversion was more commonly seen in subjects who carried a genotype producing high levels of IL-10; it was seen in 83% of subjects with the GG genotype versus 54% of subjects with the AA genotype at IL-10 gene position -1082 (P, 0.02), in 71% of those with the CC genotype versus 33% of those with the TT genotype at position -819 (P, 0.005), and in 71% of those with the CC genotype versus 38% of those with the AA genotype at position -592 (P, 0.02). Travelers with the GCC haplotype were more likely to have symptomatic seroconversion than those with the ATA haplotype (71% versus 38%; P, 0.002). Travelers genetically predisposed to produce high levels of IL-10 were more likely to experience symptomatic ETEC TD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasma membrane xc- cystine/glutamate transporter mediates cellular uptake of cystine in exchange for intracellular glutamate and is highly expressed by pancreatic cancer cells. The xCT gene, encoding the cystine-specific xCT protein subunit of xc-, is important in regulating intracellular glutathione (GSH) levels, critical for cancer cell protection against oxidative stress, tumor growth and resistance to chemotherapeutic agents including platinum. We examined 4 single nucleotide polymorphisms (SNPs) of the xCT gene in 269 advanced pancreatic cancer patients who received first line gemcitabine with or without cisplatin or oxaliplatin. Genotyping was performed using Taqman real-time PCR assays. A statistically significant correlation was noted between the 3' untranslated region (UTR) xCT SNP rs7674870 and overall survival (OS): Median survival time (MST) was 10.9 and 13.6 months, respectively, for the TT and TC/CC genotypes (p = 0.027). Stratified analysis showed the genotype effect was significant in patients receiving gemcitabine in combination with platinum therapy (n = 145): MST was 10.5 versus 14.1 months for the TT and TC/CC genotypes, respectively (p = 0.013). The 3' UTR xCT SNP rs7674870 may correlate with OS in pancreatic cancer patients receiving gemcitabine and platinum combination therapy. Paraffin-embedded core and surgical biopsy tumor specimens from 98 patients with metastatic pancreatic adenocarcinoma were analyzed by immunohistochemistry using an xCT specific antibody. xCT protein IHC expression scores were analyzed in relation to overall survival in 86 patients and genotype in 12 patients and no statistically significant association was found between the level of xCT IHC expression score and overall survival (p = 0.514). When xCT expression was analyzed in terms of treatment response, no statistically significant associations could be determined (p = 0.908). These data suggest that polymorphic variants of xCT may have predictive value, and that the xc- transporter may represent an important target for therapy in pancreatic cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing incidence of oral squamous cell carcinoma (OSCC) among young adults has been associated with sexually transmitted infection of human papillomavirus (HPV), particularly HPV16. Given the roles of p21 (WAF1/Cip1/CDKN1A) and p27 (Kip1/CDKNIB) in cell-cycle regulation and of HPV16 E6 and E7 oncoproteins in p53 degradation and pRb inactivation, the effect of HPV16 L1 seropositivity and three putatively functional single-nucleotide polymorphisms (SNPs) of p21 (p21 C70T and p21 C98A) and p27 (p27 T109G), individually and in combination, on the risk of OSCC was evaluated in a hospital-based case-control study of 327 cases and 401 cancer-free controls who were frequency-matched on age, gender and smoking status. Individuals with HPV16 L1 seropositivity had an overall 3-fold increased risk of having OSCC than those with HPV16 seronegativity. The increased risk of HPV16-associated OSCC was particularly found among younger people (aged ≤ 50 years), males, never smokers, never drinkers and oropharynx cancer patients. None of three p21 and p27 polymorphisms alone was significantly associated with risk of OSCC. Individuals with variant genotypes for both p21 polymorphisms were more likely to have OSCC than individuals with wild-type genotypes or variant genotypes for either one of the p21 polymorphisms (adjusted OR, 1.4; 95% CI, 0.9-2.1). There was a borderline significant or significant interaction between the p21 C70T, combined p21 and combined p21/p27 genotypes and HPV16 L1 seropositivity on risk of OSCC. The three studied p21 and p27 polymorphisms, individually or in combination, did not appear to have an effect on HPV16-related clinical outcomes (overall and disease-free survival and tumor recurrence). Despite the fact that the exact biological mechanism remains to be explored, these findings suggest possible involvement of p21variants, particularly the p21 C70T variant genotypes (CT/TT), in the etiology of HPV16-associated OPSCC. Further large and functional studies are required to validate the findings.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interplay between obesity, physical activity, weight gain and genetic variants in mTOR pathway have not been studied in renal cell carcinoma (RCC). We examined the associations between obesity, weight gain, physical activity and RCC risk. We also analyzed whether genetic variants in the mTOR pathway could modify the association. Incident renal cell carcinoma cases and healthy controls were recruited from the University of Texas MD Anderson Cancer Center in Houston, Texas. Cases and controls were frequency-matched by age (±5 years), ethnicity, sex, and county of residence. Epidemiologic data were collected via in-person interview. A total of 577 cases and 593 healthy controls (all white) were included. One hundred ninety-two (192) SNPs from 22 genes were available and their genotyping data were extracted from previous genome-wide association studies. Logistic regression and regression spline were performed to obtain odds ratios. Obesity at age 20, 40, and 3 years prior to diagnosis/recruitment, and moderate and large weight gain from age 20 to 40 were each significantly associated with increased RCC risk. Low physical activity was associated with a 4.08-fold (95% CI: 2.92-5.70) increased risk. Five single nucleotide polymorphisms (SNPs) were significantly associated with RCC risk and their cumulative effect increased the risk by up to 72% (95% CI: 1.20-2.46). Strata specific effects for weight change and genotyping cumulative groups were observed. However, no interaction was suggested by our study. In conclusion, energy balance related risk factors and genetic variants in the mTOR pathway may jointly influence susceptibility to RCC. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Neural tube defects (NTDs) occur in as many as 0.5-2 per 1000 live births in the United States. One of the most common and severe neural tube defects is meningomyelocele (MM) resulting from failed closure of the caudal end of the neural tube. MM has been induced by retinoic acid teratogenicity in rodent models. We hypothesized that genetic variants influencing retinoic acid (RA) induction via retinoic acid receptors (RARs) may be associated with risk for MM. METHODS: We analyzed 47 single nucleotide polymorphisms (SNPs) that span across the three retinoic acid receptor genes using the SNPlex genotyping platform. Our cohort consisted of 610 MM families. RESULTS: One variant in the RARA gene (rs12051734), three variants in the RARB gene (rs6799734, rs12630816, rs17016462), and a single variant in the RARG gene (rs3741434) were found to be statistically significant at p < 0.05. CONCLUSION: RAR genes were associated with risk for MM. For all associated SNPs, the rare allele conferred a protective effect for MM susceptibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Meningomyelocele (MM) results from lack of closure of the neural tube during embryologic development. Periconceptional folic acid supplementation is a modifier of MM risk in humans, leading toan interest in the folate transport genes as potential candidates for association to MM. METHODS: This study used the SNPlex Genotyping (ABI, Foster City, CA) platform to genotype 20 single polymorphic variants across the folate receptor genes (FOLR1, FOLR2, FOLR3) and the folate carrier gene (SLC19A1) to assess their association to MM. The study population included 329 trio and 281 duo families. Only cases with MM were included. Genetic association was assessed using the transmission disequilibrium test in PLINK. RESULTS: A variant in the FOLR2 gene (rs13908), three linked variants in the FOLR3 gene (rs7925545, rs7926875, rs7926987), and two variants in the SLC19A1 gene (rs1888530 and rs3788200) were statistically significant for association to MM in our population. CONCLUSION: This study involved the analyses of selected single nucleotide polymorphisms across the folate receptor genes and the folate carrier gene in a large population sample. It provided evidence that the rare alleles of specific single nucleotide polymorphisms within these genes appear to be statistically significant for association to MM in the patient population that was tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To identify systemic sclerosis (SSc) susceptibility loci via a genome-wide association study. METHODS: A genome-wide association study was performed in 137 patients with SSc and 564 controls from Korea using the Affymetrix Human SNP Array 5.0. After fine-mapping studies, the results were replicated in 1,107 SSc patients and 2,747 controls from a US Caucasian population. RESULTS: The single-nucleotide polymorphisms (SNPs) (rs3128930, rs7763822, rs7764491, rs3117230, and rs3128965) of HLA-DPB1 and DPB2 on chromosome 6 formed a distinctive peak with log P values for association with SSc susceptibility (P=8.16x10(-13)). Subtyping analysis of HLA-DPB1 showed that DPB1*1301 (P=7.61x10(-8)) and DPB1*0901 (P=2.55x10(-5)) were the subtypes most susceptible to SSc in Korean subjects. In US Caucasians, 2 pairs of SNPs, rs7763822/rs7764491 and rs3117230/rs3128965, showed strong association with SSc patients who had either circulating anti-DNA topoisomerase I (P=7.58x10(-17)/4.84x10(-16)) or anticentromere autoantibodies (P=1.12x10(-3)/3.2x10(-5)), respectively. CONCLUSION: The results of our genome-wide association study in Korean subjects indicate that the region of HLA-DPB1 and DPB2 contains the loci most susceptible to SSc in a Korean population. The confirmatory studies in US Caucasians indicate that specific SNPs of HLA-DPB1 and/or DPB2 are strongly associated with US Caucasian patients with SSc who are positive for anti-DNA topoisomerase I or anticentromere autoantibodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors test single nucleotide polymorphisms (SNPs) in coding sequences of 12 candidate genes involved in glucose metabolism and obesity for associations with spina bifida. Genotyping was performed on 507 children with spina bifida and their parents plus anonymous control DNAs from Hispanic and Caucasian individuals. The transmission disequilibrium test was performed to test for genetic associations between transmission of alleles and spina bifida in the offspring (P < .05). A statistically significant association between Lys481 of HK1 (G allele), Arg109Lys of LEPR (G allele), and Pro196 of GLUT1 (A allele) was found ( P = .019, .039, and .040, respectively). Three SNPs on 3 genes involved with glucose metabolism and obesity may be associated with increased susceptibility to spina bifida.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2011, there will be an estimated 1,596,670 new cancer cases and 571,950 cancer-related deaths in the US. With the ever-increasing applications of cancer genetics in epidemiology, there is great potential to identify genetic risk factors that would help identify individuals with increased genetic susceptibility to cancer, which could be used to develop interventions or targeted therapies that could hopefully reduce cancer risk and mortality. In this dissertation, I propose to develop a new statistical method to evaluate the role of haplotypes in cancer susceptibility and development. This model will be flexible enough to handle not only haplotypes of any size, but also a variety of covariates. I will then apply this method to three cancer-related data sets (Hodgkin Disease, Glioma, and Lung Cancer). I hypothesize that there is substantial improvement in the estimation of association between haplotypes and disease, with the use of a Bayesian mathematical method to infer haplotypes that uses prior information from known genetics sources. Analysis based on haplotypes using information from publically available genetic sources generally show increased odds ratios and smaller p-values in both the Hodgkin, Glioma, and Lung data sets. For instance, the Bayesian Joint Logistic Model (BJLM) inferred haplotype TC had a substantially higher estimated effect size (OR=12.16, 95% CI = 2.47-90.1 vs. 9.24, 95% CI = 1.81-47.2) and more significant p-value (0.00044 vs. 0.008) for Hodgkin Disease compared to a traditional logistic regression approach. Also, the effect sizes of haplotypes modeled with recessive genetic effects were higher (and had more significant p-values) when analyzed with the BJLM. Full genetic models with haplotype information developed with the BJLM resulted in significantly higher discriminatory power and a significantly higher Net Reclassification Index compared to those developed with haplo.stats for lung cancer. Future analysis for this work could be to incorporate the 1000 Genomes project, which offers a larger selection of SNPs can be incorporated into the information from known genetic sources as well. Other future analysis include testing non-binary outcomes, like the levels of biomarkers that are present in lung cancer (NNK), and extending this analysis to full GWAS studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stroke is the third leading cause of death and a major debilitating disease in the United States. Multiple factors, including genetic factors, contribute to the development of the disease. Genome-wide association studies (GWAS) have contributed to the identification of genetic loci influencing risk for complex diseases, such as stroke. In 2010, a GWAS of incident stroke was performed in four large prospective cohorts from the USA and Europe and identified an association of two Single Nucleotide Polymorphisms (SNPs) on chromosome 12p13 with a greater risk of ischemic stroke in individuals of European and African-American ancestry. These SNPs are located 11 Kb upstream of the nerve injury-induced gene 2, Ninjurin2 (NINJ2), suggesting that this gene may be involved in stroke pathogenesis. NINJ2 is a cell adhesion molecule induced in the distal glial cells from a sciatic-nerve injury at 7-days after injury. In an effort to ascribe a possible role of NINJ2 in stroke, we have assessed changes in the level of gene and protein expression of NINJ2 following a time-course from a transiently induced middle cerebral artery ischemic stroke in mice brains. We report an increase in the gene expression of NINJ2 in the ischemic and peri-infarct (ipsilateral) cortical tissues at 7 and 14-days after stroke. We also report an increase in the protein expression of NINJ2 in the cortex of both the ipsilateral and contralateral cortical tissues at the same time-points. We conclude that the expression of NINJ2 is regulated by an ischemic stroke in the cortex and is consistent with NINJ2 being involved in the recovery time-points of stroke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural tube defects (NTDs) are the most common severely disabling birth defects in the United States, with a frequency of approximately 1–2 of every 1,000 births. This text includes the identification and evaluation of candidate susceptibility genes that confer risk for the development of neural tube defects (NTDs). The project focused on isolated meningomyelocele, also termed spina bifida (SB). ^ Spina bifida is a complex disease with multifactorial inheritance, therefore the subject population (consisting of North American Caucasians and Hispanics of Mexicali-American descent) was composed of 459 simplex SB families who were tested for genetic associations utilizing the transmission disequilibrium test (TDT), a nonparametric linkage technique. Three categories of candidate genes were studied, including (1) human equivalents of genes determined in mouse models to cause NTDs, (2) HOX and PAX genes, and (3) the MTHFR gene involved in the metabolic pathway of folate. ^ The C677T variant of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene was the first mutation in this gene to be implicated as a risk factor for NTDs. Our evaluation of the MTHFR gene provides evidence that maternal C677T homozygosity is a risk factor for upper level spina bifida defects in Hispanics [OR = 2.3, P = 0.02]. This observed risk factor is of great importance due to the high prevalence of this homozygous genotype in the Hispanic population. Additionally, maternal C677T/A1298C compound heterozygosity is a risk factor for upper level spina bifida defects in non-Hispanic whites [OR = 3.6, P = 0.03]. ^ For TDT analysis, our total population of 1128 subjects were genotyped for 54 markers from within and/or flanking the 20 candidate genes/gene regions of interest. Significant TDT findings were obtained for 3 of the 54 analyzed markers: d20s101 flanking the PAX1 gene (P = 0.019), d1s228 within the PAX7 gene (P = 0.011), and d2s110 within the PAX8 gene (P = 0.013). These results were followed-up by testing the genes directly for mutations utilizing single-strand conformational analysis (SSCA) and direct sequencing. Multiple variations were detected in each of these PAX genes; however, these variations were not passed from parent to child in phase with the positively transmitted alleles. Therefore, these variations do not contribute to the susceptibility of spina bifida, but rather are previously unreported single nucleotide polymorphisms. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linkage disequilibrium (LD) is defined as the nonrandom association of alleles at two or more loci in a population and may be a useful tool in a diverse array of applications including disease gene mapping, elucidating the demographic history of populations, and testing hypotheses of human evolution. However, the successful application of LD-based approaches to pertinent genetic questions is hampered by a lack of understanding about the forces that mediate the genome-wide distribution of LD within and between human populations. Delineating the genomic patterns of LD is a complex task that will require interdisciplinary research that transcends traditional scientific boundaries. The research presented in this dissertation is predicated upon the need for interdisciplinary studies and both theoretical and experimental projects were pursued. In the theoretical studies, I have investigated the effect of genotyping errors and SNP identification strategies on estimates of LD. The primary importance of these two chapters is that they provide important insights and guidance for the design of future empirical LD studies. Furthermore, I analyzed the allele frequency distribution of 26,530 single nucleotide polymorphisms (SNPs) in three populations and generated the first-generation natural selection map of the human genome, which will be an important resource for explaining and understanding genomic patterns of LD. Finally, in the experimental study, I describe a novel and simple, low-cost, and high-throughput SNP genotyping method. The theoretical analyses and experimental tools developed in this dissertation will facilitate a more complete understanding of patterns of LD in human populations. ^