10 resultados para sigma delta modulator

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously shown that vasculogenesis, the process by which bone marrow-derived cells are recruited to the tumor and organized to form a blood vessel network de novo, is essential for the growth of Ewing’s sarcoma. We further demonstrated that these bone marrow cells differentiate into pericytes/vascular smooth muscle cells(vSMC) and contribute to the formation of the functional vascular network. The molecular mechanisms that control bone marrow cell differentiation into pericytes/vSMC in Ewing’s sarcoma are poorly understood. Here, we demonstrate that the Notch ligand Delta like ligand 4 (DLL4) plays a critical role in this process. DLL4 is essential for the formation of mature blood vessels during development and in several tumor models. Inhibition of DLL4 causes increased vascular sprouting, decreased pericyte coverage, and decreased vessel functionality. We demonstrate for the first time that DLL4 is expressed by bone marrow-derived pericytes/vascular smooth muscle cells in two Ewing’s sarcoma xenograft models and by perivascular cells in 12 out of 14 patient samples. Using dominant negative mastermind to inhibit Notch, we demonstrate that Notch signaling is essential for bone marrow cell participation in vasculogenesis. Further, inhibition of DLL4 using either shRNA or the monoclonal DLL4 neutralizing antibody YW152F led to dramatic changes in blood vessel morphology and function. Vessels in tumors where DLL4 was inhibited were smaller, lacked lumens, had significantly reduced numbers of bone marrow-derived pericyte/vascular smooth muscle cells, and were less functional. Importantly, growth of TC71 and A4573 tumors was significantly inhibited by treatment with YW152F. Additionally, we provide in vitro evidence that DLL4-Notch signaling is involved in bone marrow-derived pericyte/vascular smooth muscle cell formation outside of the Ewing’s sarcoma environment. Pericyte/vascular smooth muscle cell marker expression by whole bone marrow cells cultured with mouse embryonic stromal cells was reduced when DLL4 was inhibited by YW152F. For the first time, our findings demonstrate a role for DLL4 in bone marrow-derived pericyte/vascular smooth muscle differentiation as well as a critical role for DLL4 in Ewing’s sarcoma tumor growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primate immunodeficiency viruses, or lentiviruses (HIV-1, HIV-2, and SIV), and hepatitis delta virus (HDV) are RNA viruses characterized by rapid evolution. Infection by primate immunodeficiency viruses usually results in the development of acquired immunodeficiency syndrome (AIDS) in humans and AIDS-like illnesses in Asian macaques. Similarly, hepatitis delta virus infection causes hepatitis and liver cancer in humans. These viruses are heterogeneous within an infected patient and among individuals. Substitution rates in the virus genomes are high and vary in different lineages and among sites. Methods of phylogenetic analysis were applied to study the evolution of primate lentiviruses and the hepatitis delta virus. The following results have been obtained: (1) The substitution rate varies among sites of primate lentivirus genes according to the two parameter gamma distribution, with the shape parameter $\alpha$ being close to 1. (2) Primate immunodeficiency viruses fall into species-specific lineages. Therefore, viral transmissions across primate species are not as frequent as suggested by previous authors. (3) Primate lentiviruses have acquired or lost their pathogenicity several times in the course of evolution. (4) Evidence was provided for multiple infections of a North American patient by distinct HIV-1 strains of the B subtype. (5) Computer simulations indicate that the probability of committing an error in testing HIV transmission depends on the number of virus sequences and their length, the divergence times among sequences, and the model of nucleotide substitution. (6) For future investigations of HIV-1 transmissions, using longer virus sequences and avoiding the use of distant outgroups is recommended. (7) Hepatitis delta virus strains are usually related according to the geographic region of isolation. (8) Evolution of HDV is characterized by the rate of synonymous substitution being lower than the nonsynonymous substitution rate and the rate of evolution of the noncoding region. (9) There is a strong preference for G and C nucleotides at the third codon positions of the HDV coding region. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sigma (σ) subunit of eubacterial RNA polymerase is essential for initiation of transcription at promoter sites. σ factor directs the RNA polymerase core subunits ( a2bb′ ) to the promoter consensus elements and thereby confers selectivity for transcription initiation. The N-terminal domain (region 1.1) of Escherichia coli σ70 has been shown to inhibit DNA binding by the C-terminal DNA recognition domains when σ is separated from the core subunits. Since DNA recognition by RNA polymerase is the first step in transcription, it seemed plausible that region 1 might also influence initiation processes subsesquent to DNA binding. This study explores the functional roles of regions 1.1 and 1.2 of σ70 in transcription initiation. Analysis in vitro of the transcriptional properties of a series of N-terminally truncated σ70 derivates revealed a critical role for region 1.1 at several key stages of initiation. Deletion of the first 75 to 100 amino acids of σ70 (region 1.1) resulted in both a slow rate of transition from a closed promoter complex to a DNA-strand-separated open complex, as well as a reduced efficiency of transition from the open complex to a transcriptionally active open complex. These effects were partially reversed by addition of a polypeptide containing region 1.1 in trans. Therefore, region 1.1 not only modulates DNA binding but is important for efficient transcription initiation, once a closed complex has formed. A deletion of the first 133 amino acids which removes both regions 1.1 and 1.2 resulted in arrest of initiation at the earliest closed complex, suggesting that region 1.2 is required for open complex formation. Mutagenesis of region 1.1 uncovered a mechanistically important role for isoleucine at position 53 (I53). Substitution of I53 with alanine created a σ factor that associated with the core subunits to form holoenzyme, but the holoenzyme was severely deficient for promoter binding. The I53A phenotype was suppressed in vivo by truncation of five amino acids from the C-terminus of σ 70. These observations are consistent with a model in which σ 70I53A fails to undergo a critical conformational change upon association with the core subunits, which is needed to expose the DNA-binding domains and confer promoter recognition capability upon holoenzyme. To understand the basis of the autoinhibitory properties of the σ70 N-terminal domain, in the absence of core RNA polymerase, a preliminary physical assessment of the interdomain interactions within the σ70 subunit was launched. Results support a model in which N-terminal amino acids are in close proximity to residues in the C-terminus of the σ 70 polypeptide. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sigma (σ) subunit of eubacterial RNA polymerase is required for recognition of and transcription initiation from promoter DNA sequences. One family of sigma factors includes those related to the primary sigma factor from E. coli, σ70. Members of the σ70 family have four highly conserved domains, of which regions 2 through 4 are present in all members. Region 1 can be subdivided into regions 1.1 and 1.2. Region 1.1 affects DNA binding by σ 70 alone, as well as transcription initiation by holoenzyme. Region 1.2, present and highly conserved in most sigma factors, has not yet been assigned a putative function, although previous work demonstrated that it is not required for either association with the core subunits of RNA polymerase or promoter specific binding by holoenzyme. This study primarily investigates the functional role of region 1.2 during transcription initiation. In vivo and in vitro characterization of thirty-two single amino acid substitutions targeted to region 1.2 of E. coli σ70 as well as a deletion of region 1.2, revealed that mutations in region 1.2 can affect promoter binding, open complex formation, initiated complex formation, and the transition from abortive transcription to elongation. The relative degree of solvent exposure of several positions in region 1.2 has been determined, with positions 116 and 122 likely to be located near the surface of σ70. ^ During the course of this study, the existence of two “wild type” variants of E. coli σ70 was discovered. The identity of amino acid 149 has been reported variably as either arginine or aspartic acid in published articles and in online databases. In vivo and in vitro characterization of the two reported variations of E. coli σ70 (N149 and D149) has determined that the two variants are functionally equivalent. However, in vivo and in vitro characterization of single amino acid substitutions and a region 1.2 deletion in the context of each variant background revealed that the behavior of some mutations are greatly affected by the identity of amino acid 149. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myxococcus xanthus is a Gram-negative soil bacterium that undergoes multicellular development when high-density cells are starved on a solid surface. Expression of the 4445 gene, predicted to encode a periplasmic protein, commences 1.5 h after the initiation of development and requires starvation and high density conditions. Addition of crude or boiled supernatant from starving high-density cells restored 4445 expression to starving low-density cells. Addition of L-threonine or L-isoleucine to starving low-density cells also restored 4445 expression, indicating that the high-density signaling activity present in the supernatant might be composed of extracellular amino acids or small peptides. To investigate the circuitry integrating these starvation and high-density signals, the cis- and trans-acting elements controlling 4445 expression were identified. The 4445 transcription start site was determined by primer extension analysis to be 58 by upstream of the predicted translation start site. The promoter region contained a consensus sequence characteristic of e&barbelow;xtrac&barbelow;ytoplasmic f&barbelow;unction (ECF) sigma factor-dependent promoters, suggesting that 4445 expression might be regulated by an ECF sigma factor-dependent pathway, which are known to respond to envelope stresses. The small size of the minimum regulatory region, identified by 5′-end deletion analysis as being only 66 by upstream of the transcription start site, suggests that RNA polymerase could be the sole direct regulator of 4445 expression. To identify trans-acting negative regulators of 4445 expression, a strain containing a 4445-lacZ was mutagenized using the Himar1-tet transposon. The four transposon insertions characterized mapped to an operon encoding a putative ECF sigma factor, ecfA; an anti-sigma factor, reaA; and a negative regulator, reaB. The reaA and the reaB mutants expressed 4445 during growth and development at levels almost 100-fold higher than wild type, indicating that these genes encode negative regulators. The ecfA mutant expressed 4445-lacZ at basal levels, indicating that ecfA is a positive regulator. High Mg2+ concentrations over-stimulated this ecfA pathway possibly due to the depletion of exopolysaccharides and assembled type IV pili. These data indicate that the ecfA operon encodes a new regulatory stress pathway that integrates and transduces starvation and cell density cues during early development and is also responsive to cell-surface alterations.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DNA replication polymerases δ and ϵ have an inherent proofreading mechanism in the form of a 3'→5' exonuclease. Upon recognition of errant deoxynucleotide incorporation into DNA, the nascent primer terminus is partitioned to the exonuclease active site where the incorrectly paired nucleotide is excised before resumption of polymerization. The goal of this project was to identify the cellular and molecular consequences of an exonuclease deficiency. The proofreading capability of model system MEFs with EXOII mutations was abolished without altering polymerase function.^ It was hypothesized that 3'→5' exonucleases of polymerases δ and ϵ are critical for prevention of replication stress and important for sensitization to nucleoside analogs. To test this hypothesis, two aims were formulated: Determine the effect of the exonuclease active site mutation on replication related molecular signaling and identify the molecular consequences of an exonuclease deficiency when replication is challenged with nucleoside analogs.^ Via cell cycle studies it was determined that larger populations of exonuclease deficient cells are in the S-phase. There was an increase in levels of replication proteins, cell population growth and DNA synthesis capacity without alteration in cell cycle progression. These findings led to studies of proteins involved in checkpoint activation and DNA damage sensing. Finally, collective modifications at the level of DNA replication likely affect the strand integrity of DNA at the chromosomal level.^ Gemcitabine, a DNA directed nucleoside analog is a substrate of polymerases δ and ϵ and exploits replication to become incorporated into DNA. Though accumulation of gemcitabine triphosphate was similar in all cell types, incorporation into DNA and rates of DNA synthesis were increased in exonuclease defective cells and were not consistent with clonogenic survival. This led to molecular signaling investigations which demonstrated an increase in S-phase cells and activation of a DNA damage response upon gemcitabine treatment.^ Collectively, these data indicate that the loss of exonuclease results in a replication stress response that is likely required to employ other repair mechanisms to remove unexcised mismatches introduced into DNA during replication. When challenged with nucleoside analogs, this ongoing stress response coupled with repair serves as a resistance mechanism to cell death.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidermal Growth Factor Receptor (EGFR) overexpression occurs in about 90% of Head and Neck Squamous Cell Carcinoma (HNSCC) cases. Aberrant EGFR signaling has been implicated in the malignant features of HNSCC. Thus, EGFR appears to be a logical therapeutic target with increased tumor specificity for the treatment of HNSCC. Erlotinib, a small molecule tyrosine kinase inhibitor, specifically inhibits aberrant EGFR signaling in HNSCC. Only a minority of HNSCC patients were able to derive a substantial clinical benefit from erlotinib. ^ This dissertation identifies Epithelial to Mesenchymal Transition (EMT) as the biological marker that distinguishes EGFR-dependent (erlotinib-sensitive) tumors from the EGFR-independent (erlotinib-resistant) tumors. This will allow us to prospectively identify the patients who are most likely to benefit from EGFR-directed therapy. More importantly, our data identifies the transcriptional repressor DeltaEF1 as the mesenchymal marker that controls EMT phenotype and resistance to erlotinib in human HNSCC lines. si-RNA mediated knockdown of DeltaEF1 in the erlotinib-resistant lines resulted in reversal of the mesenchymal phenotype to an epithelial phenotype and significant increase in sensitivity to erlotinib. ^ DeltaEF1 represses the expression of the epithelial markers by recruiting HDACs to chromatin. This observation allows us to translate our findings into clinical application. To test whether the transcriptional repression by DeltaEF1 underlines the mechanism responsible for erlotinib resistance, erlotinib-resistant lines were treated with an HDAC inhibitor (SAHA) followed by erlotinib. This resulted in a synergistic effect and substantial increase in sensitivity to erlotinib in the resistant cell lines. Thus, combining an HDAC inhibitor with erlotinib represents a novel promising pharmacologic strategy for reversing resistance to erlotinib in HNSCC patients. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Literature worldwide has documented associations between gender-based relationship inequity, sexual communication self-efficacy, and actual use of condoms and contraceptives among young women. However studies that have rigorously tested these associations in southern Vietnam are extremely rare. This study aimed to examine these associations and other current sexual practices among undergraduate female students in the Mekong Delta. Method. A qualitative study was conducted to examine the operationalization of the Theory of Gender and Power and to obtain salient and culture-relevant dimensions of perceived gender relations in the Mekong Delta of Vietnam. Sixty-four undergraduate female students from two universities participated in eight group discussions focusing on their viewpoints regarding national and local gender equity issues. A subsequent cross-sectional survey consisting of 1181 third-year female students from Can Tho University and An Giang University was conducted. Latent variable modeling and logistic regression were employed to examine the hypothesized associations. Results. Dimensions of perceived gender relations were attributable to theoretical structures of labor, power, and cathexis. Perceptions about gender inequities were comparable to findings from several reports, in which women were still viewed as inferior and subordinate to men. Among students who had ever had a boyfriend(s) (72.4%), 44.8% indicated that their boyfriend had ever asked for sex, 13% had ever had penile-vaginal sex, and 10.3% had ever had oral sex. For those who had ever had penile-vaginal sex, 33% did not use any contraceptive method at first sex. The greater a student’s perception that women were subordinate to men, the lower her self-efficacy for sexual communication and the lower her actual frequencies of asking for contraceptive or condom use. Sexual communication self-efficacy was marginally associated with actual contraceptive use (p=.039) and condom use (p=.092) at first sex. Conclusion. Sexual health promotion strategies should address the influence of perceived unequal gender relations on young women’s sexual communication self-efficacy and the subsequent impact on actual contraceptive and condom use.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription of the Bacillus anthracis structural genes for the anthrax toxin proteins and biosynthetic operon for capsule are positively regulated by AtxA, a transcription regulator with unique properties. Consistent with the role of atxA in virulence factor expression, a B. anthracis atxA-null mutant is avirulent in a murine model for anthrax. In batch culture, multiple signals impact atxA transcript levels, and the timing and steady state level of atxA expression is critical for optimal toxin and capsule synthesis. Despite the apparent complex control of atxA transcription, only one trans-acting protein, the transition state regulator AbrB, has been demonstrated to directly interact with the atxA promoter. The AbrB-binding site has been described, but additional cis-acting control sequences have not been defined. Using transcriptional lacZ fusions, electrophoretic mobility shift assays, and Western blot analysis, the cis-acting elements and trans-acting factors involved in regulation of atxA in B. anthracis strains containing either both virulence plasmids, pXO1 and pXO2, or only one plasmid, pXO1, were studied. This work demonstrates that atxA transcription from the major start site P1 is dependent upon a consensus sequence for the housekeeping sigma factor SigA, and an A+T-rich upstream element (UP-element) for RNA polymerase (RNAP). In addition, the data show that a trans-acting protein(s) other than AbrB negatively impacts atxA transcription when it binds specifically to a 9-bp palindrome within atxA promoter sequences located downstream of P1. Mutation of the palindrome prevents binding of the trans-acting protein(s) and results in a corresponding increase in AtxA and anthrax toxin production in a strain- and culture-dependent manner. The identity of the trans-acting repressor protein(s) remains elusive; however, phenotypes associated with mutation of the repressor binding site have revealed that the trans-acting repressor protein(s) indirectly controls B. anthracis development. Mutation of the repressor binding site results in misregulation and overexpression of AtxA in conditions conducive for development, leading to a marked sporulation defect that is both atxA- and pXO2-61-dependent. pXO2-61 is homologous to the sensor domain of sporulation sensor histidine kinases and is proposed to titrate an activating signal away from the sporulation phosphorelay when overexpressed by AtxA. These results indicate that AtxA is not only a master virulence regulator, but also a modulator of proper B. anthracis development. Also demonstrated in this work is the impact of the developmental regulators AbrB, Spo0A, and SigH on atxA expression and anthrax toxin production in a genetically incomplete (pXO1+, pXO2-) and genetically complete (pXO1+, pXO2+) strain background. AtxA and anthrax toxin production resulting from deletion of the developmental regulators are strain-dependent suggesting that factors on pXO2 are involved in control of atxA. The only developmental deletion mutant that resulted in a prominent and consistent strain-independent increase in AtxA protein levels was an abrB-null mutant. As a result of increased AtxA levels, there is early and increased production of anthrax toxins in an abrB-null mutant. In addition, the abrB-null mutant exhibited an increase in virulence in a murine model for anthrax. In contrast, virulence of the atxA promoter mutant was unaffected in a murine model for anthrax despite the production of 5-fold more AtxA than the abrB-null mutant. These results imply that AtxA is not the only factor impacting pathogenesis in an abrB-null mutant. Overall, this work highlights the complex regulatory network that governs expression of atxA and provides an additional role for AtxA in B. anthracis development.