4 resultados para short-strong hydrogen bond
em DigitalCommons@The Texas Medical Center
Resumo:
In haloarchaea, light-driven ion transporters have been modified by evolution to produce sensory receptors that relay light signals to transducer proteins controlling motility behavior. The proton pump bacteriorhodopsin and the phototaxis receptor sensory rhodopsin II (SRII) differ by 74% of their residues, with nearly all conserved residues within the photoreactive retinal-binding pocket in the membrane-embedded center of the proteins. Here, we show that three residues in bacteriorhodopsin replaced by the corresponding residues in SRII enable bacteriorhodopsin to efficiently relay the retinal photoisomerization signal to the SRII integral membrane transducer (HtrII) and induce robust phototaxis responses. A single replacement (Ala-215-Thr), bridging the retinal and the membrane-embedded surface, confers weak phototaxis signaling activity, and the additional two (surface substitutions Pro-200-Thr and Val-210-Tyr), expected to align bacteriorhodopsin and HtrII in similar juxtaposition as SRII and HtrII, greatly enhance the signaling. In SRII, the three residues form a chain of hydrogen bonds from the retinal's photoisomerized C(13)=C(14) double bond to residues in the membrane-embedded alpha-helices of HtrII. The results suggest a chemical mechanism for signaling that entails initial storage of energy of photoisomerization in SRII's hydrogen bond between Tyr-174, which is in contact with the retinal, and Thr-204, which borders residues on the SRII surface in contact with HtrII, followed by transfer of this chemical energy to drive structural transitions in the transducer helices. The results demonstrate that evolution accomplished an elegant but simple conversion: The essential differences between transport and signaling proteins in the rhodopsin family are far less than previously imagined.
Resumo:
We detect internal water molecules in a membrane-embedded receptor-transducer complex and demonstrate water structure changes during formation of the signaling state. Time-resolved FTIR spectroscopy reveals stimulus-induced repositioning of one or more structurally active water molecules to a significantly more hydrophobic environment in the signaling state of the sensory rhodopsin II (SRII)-transducer (HtrII) complex. These waters, distinct from bound water molecules within the SRII receptor, appear to be in the middle of the transmembrane interface region near the Tyr199(SRII)-Asn74(HtrII) hydrogen bond. We conclude that water potentially plays an important role in the SRII --> HtrII signal transfer mechanism in the membrane's hydrophobic core.
Resumo:
We investigated the induction and physiological role of Thr18 and Ser20 phosphorylation of p53 in response to DNA damage caused by treatment with ionizing (IR) or ultraviolet (UV) radiation. Polyclonal antibodies specifically recognizing phospho-Thr18 and phospho-Ser20 were used to detect p53 phosphorylation in vivo. Analyses of five wild-type (wt) p53 containing cell lines revealed lineage specific differences in phosphorylation of Thr18 and Ser20 after treatment with IR or UV. Importantly, the phosphorylation of p53 at Thr18 and Ser20 correlated with induction of the p53 downstream targets p21Waf1/Cip1 (p21) and Mdm-2, suggesting a transactivation enhancing role for Thr18 and Ser20 phosphorylation. Whereas Thr18 phosphorylation appears to abolish side-chain hydrogen bonding between Thr18 and Asp21, Ser20 phosphorylation may introduce charge attraction between Ser20 and Lys24. Both of these interactions could contribute to stabilizing α-helical conformation within the p53 transactivation domain. Mutagenesis-derived phosphorylation mimicry of p53 at Thr18 and Ser20 by Asp substitution (p53T18D/S20D) altered transactivation domain conformation and significantly reduced the interaction of p53 with the transactivation repressor Mdm-2. Mdm-2 interaction was also reduced with p53 containing a single site Asp substitution at Ser20 (p53S20D) and with the Thr18/Asp21 hydrogen bond disrupting p53 mutants p53T18A, p53T18D and p53D21A. In contrast, no direct effect was observed on the interaction of p53T18A, p53T18D and p53D21A with the basal transcription factor TAF II31. However, prior incubation of p53T18A, p53T18D and p53D21A with Mdm-2 modulated TAFII31 interaction, suggesting Mdm-2 blocks the accessibility of p53 to TAFII31. Consistently, p53-null cells transfected with p53S20D and p53T18A, p53T18D and p53D21A demonstrated enhanced endogenous p21 expression; transfection with p53T18D/S20D most significantly enhanced p21 and fas/APO-1 (fas ) expression. Expression of p53T18A, p53T18D and p53D21A in p53/Mdm-2-double null cells exhibited no discernible differences in p21 expression. Cell proliferation was also significantly curtailed in p53-null cells transfected with p53T18D/S20D relative to cells transfected with wt p53. We conclude the irradiation-induced phosphorylation of p53 at Thr18 and Ser20 alters the α-helical conformation of its transactivation domain. Altered conformation reduces direct interaction with the transrepressor Mdm-2, enhancing indirect recruitment of the basal transcription factor TAFII31, facilitating sequence-specific transactivation function resulting in proliferative arrest. ^
Resumo:
The purpose of this study was to determine the effects of contamination with smoker's and non-smoker's saliva on the bond strength of resin composite to superficial dentin using different adhesive systems. The interfacial structure between the resin and dentin was evaluated for each treatment using environmental scanning electron microscopy (ESEM). Freshly extracted human molars were ground with 600-grit SiC paper to expose the superficial dentin. Adhesives [One-Up-Bond-F-Plus (OUFP) and Adper-Prompt-L-Pop (APLP)] and resin composite (TPHSpectrum) were bonded to the dentin (n = 8/group, 180 total specimens) under five surface conditions: control (adhesive applied following manufacturers' instructions); saliva, then 5-s air dry, then adhesive; adhesive, saliva, 5-s air dry; adhesive, saliva, 5-s water rinse, 5-s air dry (ASW group); and adhesive, saliva, 5-s water rinse, 5-s air dry, reapply adhesive (ASWA group). After storage in water at 37 degrees C for 24 h, the specimens were debonded under tension at a speed of 0.5 mm/min. ESEM photomicrographs of the dentin/adhesive interfaces were taken. Mean bond strength ranged from 8.1 to 24.1 MPa. Fisher's protected least significant difference (P = 0.05) intervals for critical adhesive, saliva, and surface condition differences were 1.3, 1.3, and 2.1 MPa, respectively. There were no significant differences in bond strength to dentin between contamination by smoker's and nonsmoker's saliva, but bond strengths were significantly different between adhesive systems, with OUFP twice as strong as APLP under almost all conditions. After adhesive application and contamination with either smoker's or nonsmoker's saliva followed by washing and reapplication of the adhesive (ASWA group), the bond strength of both adhesive systems was the same as that of the control group.