13 resultados para sex cord stromal tumor

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Gastrointestinal Stromal Tumors (GISTs) are rare mesenchymal tumors of the gastrointestinal (GI) tract with spindled cell, epithelioid, or occasionally pleomorphic morphology. The primary objective of this paper is to describe the demographic and clinical characteristics and survival among GIST patients registered at the University of Texas M.D. Anderson Cancer Center (MDACC). ^ Methods. This cohort study includes 783 consecutive patients diagnosed with GIST from 1995 to 2007. Demographic, clinical and survival information were obtained from the MDACC cancer registry. ^ Statistical Analysis. Kaplan-Meier survival curves, univariate and multivariate Cox proportional hazards analysis were conducted to estimate survival and identify prognostic clinical factors associated with survival. Results. The age at diagnosis of MDACC GIST cases ranged from 17 to 91 with a mean of 57 years and a male-to-female ratio of 1.3:1. The racial distribution was whites 77%, African-Americans 9.5%, Hispanics 9.3% and other races 4.2%. Fifty per cent of the GISTs arose from stomach, 35% small intestine, 7% retroperitoneal space, 6% colorectal and 2% were omentum and mesentery. About half of the tumors were less than 10 cm in size. Fifty eight per cent of the tumors were localized whereas 36% were metastatic. MDACC GIST patients were generally comparable to SEER patients, but, on the average, were 7 years younger than SEER patients and were predominantly whites. ^ Stratification of 783 GIST cases by year of diagnosis based on the introduction of imatinib treatment in 2000 revealed that 60% of the GIST cases were first diagnosed between 2000 and 2007 whereas, 40% were first diagnosed between 1995 and 1999. There was a significant difference between the two cohorts in the distribution of race, GIST symptom, tumor size, tumor site, and stage of the tumor at diagnosis. The 1- and 5-year survival was 93% and 59% in the 1995–2007 cohort. Multivariate Cox regression analysis identified age at diagnosis (p<0.001), female sex (p=0.047), tumor size (p=0.07), multiple cancers (p=0.002), and GIST diagnosed between 2000 and 2007 (p<0.001) were significantly associated with survival. Approximately, 58% of the cases were treated with imatinib whereas 42% did not receive imatinib in 2000–2005 cohort. There was a significant difference in survival between imatinib and non-imatinib groups and in the distribution of tumor size categories, stage of the tumor at diagnosis and cancers before the diagnosis of GIST. The 1- and 5-year survival for imatinib patients was 99% and 73% and was 91% and 63% for non-imatinib patients. Multivariate Cox regression analysis of the 2000–2007 cohort identified, age at diagnosis and tumor stage as possible prognostic factors associated with survival.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although gastrointestinal stromal tumor (GIST) is effectively treated with imatinib, there are a number of clinical challenges in the optimal treatment of these patients. The plasma steady-state trough level of imatinib has been proposed to correlate with clinical outcome. Plasma imatinib level may be affected by a number of patient characteristics. Additionally, the ideal plasma trough concentration of imatinib is likely to vary based on the KIT genotype (genotype determines imatinib binding affinity) of the individual patient. Patients’ genotype or plasma imatinib level may influence the type and duration of response that is appreciable by clinical evaluation. The objectives of this study were to determine effects of genotype on the type of response appreciable by current imaging criteria, to determine the distribution of plasma imatinib levels in patients with GIST, to determine factors that correlate with plasma imatinib level, to determine the incremental effects of imatinib dose escalation; and to explore the median plasma levels and outcomes of patients with various KIT mutations. We therefore obtained KIT mutation information and analyzed CT response for size and density measurement of GISTs at baseline and within the first four moths of imatinib treatment. In 126 patients with metastatic/unresectable disease, the KIT genotype of patients’ tumor was significantly associated with unique response characteristics measurable by CT. Furthermore, hepatic and peritoneal metastases differed in their response characteristics. A subgroup of patients with KIT exon 9 mutation, who received higher doses of imatinib and experienced higher trough imatinib levels, experienced improved progression-free survival similar to that of KIT exon 11 patients. Therefore, we have found that imatinib plasma levels were higher in patients with elevated Aspartate amino transferase, were women, were older, or were being treated concomitantly with CYP450 substrate drugs. As expected, CYP450 inducers correlated with a lower plasma imatinib levels in GIST patients. Renal metabolism of imatinib accounts for <10%, so it was not included in the analysis but may affect covariates. Interestingly, there was a trend for low imatinib levels and inferior progression-free survival in patients who had undergone complete gastrectomy. Patients with KIT exon 9 mutation in our cohort received higher imatinib doses, experienced higher trough imatinib levels, and experienced a PFS similar to that of KIT exon 11 patients. In conclusion, imatinib plasma levels are influenced by a number of patient characteristics. The optimal imatinib plasma level for individual patients is not known but is an area of intense investigation. Our study confirms patients with KIT exon 9 mutations benefit from high-dose imatinib and higher trough imatinib levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gastrointestinal stromal tumors (GISTs) are oncogene-addicted cancers driven by activating mutations in the genes encoding receptor tyrosine kinases KIT and PDGFR-α. Imatinib mesylate, a specific inhibitor of KIT and PDGFR-α signaling, delays progression of GIST, but is incapable of achieving cure. Thus, most patients who initially respond to imatinib therapy eventually experience tumor progression, and have limited therapeutic options thereafter. To address imatinib-resistance and tumor progression, these studies sought to understand the molecular mechanisms that regulate apoptosis in GIST, and evaluate combination therapies that kill GISTs cells via complementary, but independent, mechanisms. BIM (Bcl-2 interacting mediator of apoptosis), a pro-apoptotic member of the Bcl-2 family, effects apoptosis in oncogene-addicted malignancies treated with targeted therapies, and was recently shown to mediate imatinib-induced apoptosis in GIST. This dissertation examined the molecular mechanism of BIM upregulation and its cytotoxic effect in GIST cells harboring clinically-representative KIT mutations. Additionally, imatinib-induced alterations in BIM and pro-survival Bcl-2 proteins were studied in specimens from patients with GIST, and correlated to apoptosis, FDG-PET response, and survival. Further, the intrinsic pathway of apoptosis was targeted therapeutically in GIST cells with the Bcl-2 inhibitor ABT-737. These studies show that BIM is upregulated in GIST cells and patient tumors after imatinib exposure, and correlates with induction of apoptosis, response by FDG-PET, and disease-free survival. These studies contribute to the mechanistic understanding of imatinib-induced apoptosis in clinically-relevant models of GIST, and may facilitate prediction of resistance and disease progression in patients. Further, combining inhibition of KIT and Bcl-2 induces apoptosis synergistically and overcomes imatinib-resistance in GIST cells. Given that imatinib-resistance and GIST progression may reflect inadequate BIM-mediated inhibition of pro-survival Bcl-2 proteins, the preclinical evidence presented here suggests that direct engagement of apoptosis may be an effective approach to enhance the cytotoxicity of imatinib and overcome resistance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Epidemiologic case-control studies of small groups of childhood nervous system tumor patients have suggested that parental employment in occupations with exposure to hydrocarbons is a risk factor for disease. The main focus of this case-control study was to assess the paternal occupation at the time of birth of offspring who later developed childhood intracranial and spinal tumors. All children under 15 years of age dying of such tumors in Texas, during the period 1964-1980, were selected as cases. Disease and demographic data were abstracted from death certificates. The birth certificate for each child of the final group of 499 cases was located and parental occupation information, as well as demographic and obstetric data, were collected. The comparison group consisted of a random sample from all Texas live births with the same birth year, race and sex distribution as the cases.^ The paternal occupations were categorized into broad classifications of those involving hydrocarbon exposure versus those that did not, based on the occupation criteria used in the previous studies. Odds ratios did not indicate any increased risk associated with general paternal hydrocarbon exposure in the workplace. In prior studies, increased risk estimates were detected with narrower groups of occupations involving exposure to hydrocarbon materials. The data from this study were classified according to these groups, and again, no increased risks were indicated except for a statistically insignificant but elevated odds ratio for fathers who were paper and pulp mill workers.^ Odds ratios were calculated for specific occupations and industries previously implicated as risk factors. Significantly associated odds ratios (OR) were detected for electricians (OR = 3.5), especially those working for construction companies (OR = 10.0), for employment in the printing occupations (OR = 4.5), particularly graphic arts workers (OR = 21.9), and in the electronics and electronic machinery industries (OR = 3.5). Analysis of the petroleum refining and chemical industries, which were not found in previous study populations, revealed significantly elevated odds ratios of 3.0 for occupations with probable heavy exposure to chemicals and petroleum compounds and 10.0 for salesmen of chemical products. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gastrointestinal Stromal Tumors (GIST) are sarcomas driven by gain-of-function mutations of KIT or PDGFRA. Although, the introduction of tyrosine kinase inhibitors has dramatically changed the history of this disease, evidences emerge that inhibition of KIT or PDGFRA are not sufficient to cure patients. The developmental pathway Notch has a critical role in the cell fate, regulating cell proliferation and differentiation. Dysregulation of Notch pathway has been implicated in a wide variety of cancers functioning as a tumor promoter or a tumor suppressor in a cell context dependent manner. Given that Notch activation deregulates the morphogenesis of mesenchymal cells in the GI track, that Notch acts as a tumor suppressor in neuroendocrine tumors, and finally that the cell of origin of GIST are the Interstitial Cell of Cajal that arise from a mesenchymal origin with some neuroendocrine features, we hypothesized that Notch pathway signaling may play a role in growth, survival and differentiation of GIST cells. To test this hypothesis, we genetically and pharmacologically manipulated the Notch pathway in human GIST cells. In this study, we demonstrated that constitutively active intracellular domain of Notch1 (ICN-1) expression potently induced growth arrest and downregulated KIT expression. We have performed a retrospective analysis of 15 primary GIST patients and found that high mRNA level of Hes1, a major target gene of Notch pathway, correlated with a significantly longer relapse-free survival. Therefore, we have established that treatment with the FDA approved histone deacetylase inhibitor SAHA (Vorinostat) caused dose-dependent upregulation of Notch1 expression and a parallel decrease in viability in these cells. Retroviral silencing of downstream targets of Notch with dominant negative Hes-1 as well as pharmacological inhibition of Notch pathway with a γ-secretase inhibitor partially rescued GIST cells from SAHA treatment. Taken together these results identify anti-tumor effect of Notch1 and a negative cross-talk between Notch1 and KIT pathways in GIST. Consequently, we propose that activation of this pathway with HDAC inhibitors may be a potential therapeutic strategy for GIST patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Men with localized prostate cancer (PCa) have a 100% five-year survival rate, but this rate drops to 33% for men with metastatic disease. A better understanding of the metastatic process is needed to develop better therapies for PCa. Aberrant activation of protein tyrosine kinases, including Src Family Kinases (SFKs) contribute to metastasis through numerous functions, one of which leads to increased expression of cytokines, such as IL-8. However, the relationship between Src activity and IL-8 regulation is not completely understood. In cell line models, I determined that IL-8 activates Src and in turn Src activates IL-8 demonstrating a feed forward loop contributing to the migration and invasion of PCa cells. However, IL-8 is also produced by tumor-associated stromal cells. In bone marrow derived stromal cells (HS5), I demonstrated a feed forward loop occurs as was observed in tumor cells. HS5 conditioned media increased Src activity in PCa cells. By silencing IL-8 in HS5 cells, Src activity was decreased to control levels in PCa cells as was migration and invasion. Thus, stromal cells producing IL-8 contribute to metastatic properties of PCa by a paracrine mechanism. To examine the effect of stromal cells on tumor growth and metastatic potential of PCa in vivo, I mixed HS5 and PCa cells and co-injected them intraprostatically. I determined that tumor growth and metastases were increased. By silencing IL-8 in HS5 cells and co-injecting them with PCa cells intraprostatically, tumor growth and metastases were still increased relative to injection of PCa cells alone, but decreased relative to co-injections with PCa cells and HS5 cells. These studies demonstrated: (1) a feed forward loop in both tumor and stromal cells, whereby IL-8 activates Src, derepressing IL-8 expression in PCa cells in vitro; (2) stromal produced IL-8 activates Src and contributes to the migration and invasion of PCa cells in vitro; and (3) stromal produced IL-8 is responsible, in part, for increases in PCa tumor growth and metastatic potential. Together, these studies demonstrated that IL-8-mediated Src activity increases the metastatic potential of PCa and therapeutic agents interfering with the IL-8/SFK signaling axis may be useful for prevention and treatment of metastases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tumor microenvironment is comprised of a vast array of heterogeneous cells including both normal and neoplastic cells. The tumor stroma recruitment process has been exploited for an effective gene delivery technique using bone marrow derived MSC. Targeted migration of the MSC toward the tumor microenvironment, while successful, is not yet fully understood. This study was designed to assess the role of CD44 in the migration of MSC toward the tumor microenvironment and to determine the implications of CD44-deficient MSC within the tumor stroma. Inhibition of MSC migration was evaluated through a variety of methods in vitro and in vivo including CD44 receptor knockdown, CD44 antagonists, CD44 neutralizing antibodies and small molecule inhibitor of matrix metalloproteinases. Blocking CD44 signaling through MMP inhibition was characterized by lack of intracellular domain cleavage and lead to the decrease in Twist gene expression. A functional relationship between CD44 and Twist expression was confirmed by chromatin immunoprecipitation. Next, a series of murine tumor models were used to examine the role of CD44 deficient stroma within the tumor microenvironment. Labeled transgenic CD44 knockout (KO) MSC or wild type (WT) C57/B6 MSC were used to analyze the stromal incorporation within murine breast carcinomas (EO771 and 4T1). Subsequent tumors were analyzed for vessel formation (CD31), and the presence of tumor associated fibroblast (TAF) markers, α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and fibroblast specific protein (FSP). The tumors with CD44KO MSC cells had less vessel formation than the tumors with WT MSC. The lack of fibroblastic TAF population as defined by FAP/FSP expression by the CD44KO MSC admixed tumors suggest that the bone marrow derived population of MSC were unable to contribute to the fibroblastic stromal population. Subsequently, a bone marrow transplantation experiment confirmed the endogenous migratory deficiencies of the CD44KO bone marrow derived stromal cells toward the tumor microenvironment in vivo. WT mice with CD44KO bone marrow had less CD44KOderived tumor stroma compared to mice with WT bone marrow. These results indicate that CD44 is crucial to stromal cell migration and incorporation to the tumor microenvironment as TAF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously demonstrated that bone marrow cells (BMCs) migrate to TC71 and A4573 Ewing’s sarcoma tumors where they can differentiate into endothelial cells (ECs) and pericytes and, participate in the tumor vascular development. This process of neo-vascularization, known as vasculogenesis, is essential for Ewing’s sarcoma growth with the soluble vascular endothelial growth factor, VEGF165, being the chemotactic factor for BMC migration to the tumor site. Inhibiting VEGF165 in TC71 tumors (TC/siVEGF7-1) inhibited BMC infiltration to the tumor site and tumor growth. Introducing the stromal-derived growth factor (SDF-1α) into the TC/siVEGF7-1 tumors partially restored vasculogenesis with infiltration of BMCs to a perivascular area where they differentiated into pericytes and rescued tumor growth. RNA collected from the SDF-1α-treated TC/siVEGF7-1 tumors also revealed an increase in platelet-derived growth factor B (PDGF-B) mRNA levels. PDGF-B expression is elevated in several cancer types and the role of PDGF-B and its receptor, PDGFR-β, has been extensively described in the process of pericyte maturation. However, the mechanisms by which PDGF-B expression is up-regulated during vascular remodeling and the process by which BMCs differentiate into pericytes during tumor vasculogenesis remain areas of investigation. In this study, we are the first to demonstrate that SDF-1α regulates the expression of PDGF-B via a transcriptional mechanism which involves binding of the ELK-1 transcription factor to the pdgf-b promoter. We are also first to validate the critical role of the SDF-1α/PDGF-B pathway in the differentiation of BMCs into pericytes both in vitro and in vivo. SDF-1α up-regulated PDGF-B expression in both TC/siVEGF7-1 and HEK293 cells. In contrast, down-regulating SDF-1α, down-regulated PDGF-B. We cloned the 2 kb pdgf-b promoter fragment into the pGL3 reporter vector and showed that SDF-1α induced pdgf-b promoter activity. We used chromatin immunoprecipitation (ChIP) and demonstrated that the ELK-1 transcription factor bound to the pdgf-b promoter in response to SDF-1α stimulation in both TC/siVEGF7-1 and HEK293 cells. We collected BMCs from the hind femurs of mice and cultured the cells in medium containing SDF-1α and PDGF-B and found that PDGFR-β+ BMCs differentiated into NG2 and desmin positive pericytes in vitro. In contrast, inhibiting SDF-1α and PDGF-B abolished this differentiation process. In vivo, we injected TC71 or A4573 tumor-bearing mice with the SDF-1α antagonist, AMD3100 and found that inhibiting SDF-1α signaling in the tumor microenvironment decreased the tumor microvessel density, decreased the tumor blood vessel perfusion and, increased tumor cell apoptosis. We then analyzed the effect of AMD3100 on vasculogenesis of Ewing’s sarcoma and found that BMCs migrated to the tumor site where they differentiated into ECs but, they did not form thick perivascular layers of NG2 and desmin positive pericytes. Finally, we stained the AMD3100-treated tumors for PDGF-B and showed that inhibiting SDF-1α signaling also inhibited PDGF-B expression. All together, these findings demonstrated that the SDF-1α/PDGF-B pathway plays a critical role in the formation of BM-derived pericytes during vasculogenesis of Ewing’s sarcoma tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesenchymal stromal cell (MSC) therapy has shown promise for the treatment of traumatic brain injury (TBI). Although the mechanism(s) by which MSCs offer protection is unclear, initial in vivo work has suggested that modulation of the locoregional inflammatory response could explain the observed benefit. We hypothesize that the direct implantation of MSCs into the injured brain activates resident neuronal stem cell (NSC) niches altering the intracerebral milieu. To test our hypothesis, we conducted initial in vivo studies, followed by a sequence of in vitro studies. In vivo: Sprague-Dawley rats received a controlled cortical impact (CCI) injury with implantation of 1 million MSCs 6 h after injury. Brain tissue supernatant was harvested for analysis of the proinflammatory cytokine profile. In vitro: NSCs were transfected with a firefly luciferase reporter for NFkappaB and placed in contact culture and transwell culture. Additionally, multiplex, quantitative PCR, caspase 3, and EDU assays were completed to evaluate NSC cytokine production, apoptosis, and proliferation, respectively. In vivo: Brain supernatant analysis showed an increase in the proinflammatory cytokines IL-1alpha, IL-1beta, and IL-6. In vitro: NSC NFkappaB activity increased only when in contact culture with MSCs. When in contact with MSCs, NSCs show an increase in IL-6 production as well as a decrease in apoptosis. Direct implantation of MSCs enhances neuroprotection via activation of resident NSC NFkappaB activity (independent of PI3 kinase/AKT pathway) leading to an increase in IL-6 production and decrease in apoptosis. In addition, the observed NFkappaB activity depends on direct cell contact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer represents the most commonly diagnosed malignancies in American men and is the second leading cause of male cancer deaths. The overall objectives of this research were designed to understand the cellular and molecular mechanisms of prostatic carcinoma growth and progression. This dissertation was divided into two major parts: (1) to clone and characterize soluble factor(s) associated with bone that may mediate prostatic carcinoma growth and progression; (2) to investigate the roles of extracellular matrix in prostatic carcinogenesis.^ The propensity of prostate cancer cells to metastasize to the axial skeleton and the subsequent osteoblastic reactions observed in the bone indicate the possible reciprocal cellular interaction between prostate cancer cells and the bone microenvironment. To understand the molecular and cellular basis of this interaction, I focused on the identification and cloning of soluble factor(s) from bone stromal cells that may exert direct mitogenic action on cultured prostate cells. A novel BPGF-1 gene expressed specifically by bone and male accessory sex organs (prostate, seminal vesicles, and coagulating gland) was identified and cloned.^ The BPGF-1 was identified and cloned from a cDNA expression library prepared from a human bone stromal cell line, MS. The conditioned medium (CM) of this cell line contains mitogenic materials that induce human prostate cancer cell growth both in vivo and in vitro. The cDNA expression library was screened by an antibody prepared against the mitogenic fraction of the CM.^ The cloned BPGF-1 cDNA comprises 3171 nucleotides with a single open reading frame of 1620 nucleotides encoding 540 amino acids. The BPGF-1 gene encodes two transcripts (3.3 and 2.5 kb) with approximately equal intensity in human cells and tissues, but only one transcript (2.5 kb) in rat and mouse tissues. Southern blot analysis of human genomic DNA revealed a single BPGF-1 gene. The BPGF-1 gene is expressed predominantly in bone and seminal vesicles, but at a substantially lower level in prostate. Polyclonal antibodies generated from synthetic peptides that correspond to the nucleotide sequences of the cloned BPGF-1 cDNA reacted with a putative BPGF-1 protein with an apparent molecular weight of 70 kDa. The conditioned media isolated from COS cells transfected with BPGF-1 cDNA stimulated the proliferation and increased the anchorage-independent growth of prostate epithelial cells. These findings led us to hypothesize that BPGF-1 expression in relevant organs, such as prostate, seminal vesicles, and bone, may lead to local prostate cancer growth, metastasis to the seminal vesicles, and subsequently dissemination to the skeleton.^ To assess the importance of extracellular matrix in prostatic carcinogenesis, the role of extracellular matrix in induction of rat prostatic carcinoma growth in vivo was evaluated. NbE-1, a nontumorigenic rat prostatic epithelial cell line, was induced to form carcinoma in athymic nude hosts by coinjecting them with Matrigel and selected extracellular matrix components. Induction of prostatic tumor formation by laminin and collagen IV was inhibited by their respective antibodies. Prostatic epithelial cells cloned from the tumor tissues were found to form tumors in athymic nude hosts in the absence of exogenously added extracellular matrix. These results suggest that extracellular matrix induce irreversibly prostatic epithelial cells that behave distinctively different from the parental prostatic epithelial cell line. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gastrointestinal stromal tumors (GIST) represent 80% of sarcoma arising from the GI tract. The inciting event in tumor progression is mutation of the kit or, rarely, platelet derived growth factor receptor-α (PDGFR) gene. These mutations encode ligand independent, constitutively active proteins: Kit or PDGFR. ^ These tumors are notoriously chemo and radio resistant. Historically, patients with advanced disease realized a median overall survival of 9 months. However, with modern management of GIST with imatinib mesylate (Novartis), a small molecule inhibitor of the Kit, PDGFR, and Abl tyrosine kinases, patients now realize a median overall survival greater than 30 months. However, almost half of patients present with surgically resectable GIST and the utility of imatinib in this context has not been prospectively studied. Also, therapeutic benefit of imatinib is variable from patient to patient and alternative targeted therapy is emerging as potential alternatives to imatinib. Thus, elucidating prognostic factors for patients with GIST in the imatinib-era is crucial to providing optimal care to each particular patient. Moreover, the exact mechanism of action of imatinib in GIST is not fully understood. Therefore, physicians find difficulty in accurately predicting which patient will benefit from imatinib, how to assess response to therapy, and the time at which to assess response. ^ I have hypothesized that imatinib is tolerable and clinically beneficial in the context of surgery, VEGF expression and kit non-exon 11 genotypes portend poor survival on imatinib therapy, and imatinib's mechanism of action is in part due to anti-vascular effects and inhibition of the Kit/SCF signaling axis of tumor-associated endothelial cells. ^ Results herein demonstrate that imatinib is safe and increases the duration of disease-free survival when combined with surgery. Radiographic and molecular (namely, apoptosis) changes occur within 3 days of imatinib initiation. I illustrate that non-exon 11 mutant genotypes and VEGF are poor prognostic factors for patients treated with imatinib. These findings may allow for patient stratification to emerging therapies rather than imatinib. I show that imatinib has anti-vascular effects via inducing tumor endothelial cell apoptosis perhaps by abrogation of the Kit/SCF signaling axis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To meet the requirements for rapid tumor growth, a complex array of non-neoplastic vascular, fibroblastic, and immune cells are recruited to the tumor microenvironment. Understanding the origin, composition, and mechanism(s) for recruitment of these stromal components will help identify areas for therapeutic intervention. Previous findings have suggested that ex-vivo expanded bone marrow-derived MSC home to the sites of tumor development, responding to inflammatory signals and can serve as effective drug delivery vehicles. Therefore, we first sought to fully assess conditions under which MSC migrate to and incorporate into inflammatory microenvironments and the consequences of modulated inflammation. MSC delivered to animals bearing inflammatory insults were monitored by bioluminescence imaging and displayed specific tropism and selective incorporation into all tumor and wound sites. These findings were consistent across routes of tumor establishment, MSC administration, and immunocompetence. MSC were then used as drug delivery vehicles, transporting Interferon β to sites of pancreatic tumors. This therapy was effective at inhibiting pancreatic tumor growth under homeostatic conditions, but inhibition was lost when inflammation was decreased with CDDO-Me combination treatment. Next, to examine the endogenous tumor microenvironment, a series of tissue transplant experiments were carried out in which tissues were genetically labeled and engrafted in recipients prior to tumor establishment. Tumors were then analyzed for markers of tumor associated fibroblasts (TAF): α-smooth muscle actin (α-SMA), nerve glia antigen 2 (NG2), fibroblast activation protein (FAP), and fibroblast specific protein (FSP) as well as endothelial marker CD31 and macrophage marker F4/80. We determined the majority of α-SMA+, NG2+ and CD31+ cells were non-bone marrow derived, while most FAP+, FSP+, and F4/80+ cells were recruited from the bone marrow. In accord, transplants of prospectively isolated BM MSC prior to tumor development indicated that these cells were recruited to the tumor microenvironment and co-expressed FAP and FSP. In contrast, fat transplant experiments revealed recruited fat derived cells co-expressed α-SMA, NG2, and CD31. These results indicate TAF are a heterogeneous population composed of subpopulations with distinct tissues of origin. These models have provided a platform upon which further investigation into tumor microenvironment composition and tests for candidate drugs can be performed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between occupational exposures and glioma has not been adequately assessed due to the lack of studies in current scientific literature. To address this disparity, the Harris County Brain Tumor Study, an ongoing population-based case-control study, began in January 2001. Longest-held occupation for 382 cases and 629 controls were frequency matched on age (within 5 years), sex, and race and placed into 14 predetermined occupational categories. Adjusted odds ratios and 95% confidence intervals were calculated for each category using multiple logistic regression. Potential confounders assessed included sex, age, smoking status, education and income. For all subjects, significantly elevated adjusted odds ratios were found in health-related (aOR=1.66; 95%CI=1.03, 2.68), teaching (aOR=1.84; 95%CI=1.17, 2.88), and protective service (aOR=3.6; 95%CI=1.05, 12.31) occupational categories after controlling for sex and education. A significantly lowered odds ratio was seen in the writers, artists, and entertainers category (aOR=0.14; 95%CI=0.03, 0.58). In the stratified analyses, which controlled for education, males had a significantly elevated odds ratio for protective service workers (aOR=4.83; 95%CI=1.24, 18.83) while a significantly lower odds ratio was found in mechanics and machine operators (aOR=0.33; 95%CI=0.12,0.87). In females, we observed a significantly elevated odds ratio in teachers (aOR=1.99; 95%CI=1.20,3.31) and a significantly lower odds ratio in clerical workers (aOR=0.63; 95%CI=0.45,0.90). These analyses revealed several significant associations and allowed for separate analyses by gender, distinguishing this study from many glioma studies. Further analyses should provide a large enough sample size to stratify by gender as well as histological subtype.^