2 resultados para seafood liquid waste generation
em DigitalCommons@The Texas Medical Center
Resumo:
Inefficiencies during the management of healthcare waste can give rise to undesirable health effects such as transmission of infections and environmental pollution within and beyond the health facilities generating these wastes. Factors such as prevalence of diseases, conflicts, and the efflux of intellectual capacity make low income countries more susceptible to these adverse health effects. The purpose of this systematic review was to describe the effectiveness of interventions geared towards better managing the generation, collection, transport, treatment and disposal of medical waste, as they have been applied in lower and middle income countries.^ Using a systematic search strategy and evaluation of study quality, this study reviewed the literature for published studies on healthcare waste management interventions carried out in developing countries, specifically the low and lower middle income countries from year 2000 to the current year. From an initially identified set of 829 studies, only three studies ultimately met all inclusion, exclusion and high quality criteria. A multi component intervention in Syrian Arab Republic, conducted in 2007 was aimed at improving waste segregation practice in a hospital setting. There was an increased use of segregation boxes and reduced rates of sharps injury among staff as a result of the intervention. Another study, conducted in 2008, trained medical students as monitors of waste segregation practice in an Indian teaching hospital. There was improved practice in wards and laboratories but not in the intensive care units. The third study, performed in 2008 in China, consisted of modification of the components of a medical waste incinerator to improve efficiency and reduce stack emissions. Gaseous pollutants emitted, except polychlorodibenzofurans (PCDF) were below US EPA permissible exposure limits. Heavy metal residues in the fly ash remained unchanged.^ Due to the paucity of well-designed studies, there is insufficient evidence in literature to conclude on the effectiveness of interventions in low income settings. There is suggestive but insufficient evident that multi-component interventions aimed at improving waste segregation through behavior modification, provision of segregation tools and training of monitors are effective in low income settings.^
Resumo:
A simple and inexpensive method is described for analysis of uranium (U) activity and mass in water by liquid scintillation counting using $\alpha$/$\beta$ discrimination. This method appears to offer a solution to the need for an inexpensive protocol for monitoring U activity and mass simultaneously and an alternative to the potential inaccuracy involved when depending on the mass-to-activity conversion factor or activity screen.^ U is extracted virtually quantitatively into 20 ml extractive scintillator from a 1-$\ell$ aliquot of water acidified to less than pH 2. After phase separation, the sample is counted for a 20-minute screening count with a minimum detection level of 0.27 pCi $\ell\sp{-1}$. $\alpha$-particle emissions from the extracted U are counted with close to 100% efficiency with a Beckman LS6000 LL liquid scintillation counter equipped with pulse-shape discrimination electronics. Samples with activities higher than 10 pCi $\ell\sp-1$ are recounted for 500-1000 minutes for isotopic analysis. Isotopic analysis uses events that are automatically stored in spectral files and transferred to a computer during assay. The data can be transferred to a commercially available spreadsheet and retrieved for examination or data manipulation. Values for three readily observable spectral features can be rapidly identified by data examination and substituted into a simple formula to obtain $\sp{234}$U/$\sp{238}$U ratio for most samples. U mass is calculated by substituting the isotopic ratio value into a simple equation.^ The utility of this method for the proposed compliance monitoring of U in public drinking water supplies was field tested with a survey of drinking water from Texas supplies that had previously been known to contain elevated levels of gross $\alpha$ activity. U concentrations in 32 samples from 27 drinking water supplies ranged from 0.26 to 65.5 pCi $\ell\sp{-1}$, with seven samples exceeding the proposed Maximum Contaminant Level of 20 $\mu$g $\ell\sp{-1}$. Four exceeded the proposed activity screening level of 30 pCi $\ell\sp{-1}$. Isotopic ratios ranged from 0.87 to 41.8, while one sample contained $\sp{234}$U activity of 34.6 pCi $\ell\sp{-1}$ in the complete absence of its parent, $\sp{238}$U. U mass in the samples with elevated activity ranged from 0.0 to 103 $\mu$g $\ell\sp{-1}$. A limited test of screening surface and groundwaters for contamination by U from waste sites and natural processes was also successful. ^