3 resultados para retention value prediction
em DigitalCommons@The Texas Medical Center
Resumo:
In prospective studies it is essential that the study sample accurately represents the target population for meaningful inferences to be drawn. Understanding why some individuals do not participate, or fail to continue to participate, in longitudinal studies can provide an empirical basis for the development of effective recruitment and retention strategies to improve response rates. This study examined the influence of social connectedness and self-esteem on long-term retention of participants, using secondary data from the “San Antonio Longitudinal Study of Aging” (SALSA), a population-based study of Mexican Americans (MAs) and European Americans (EAs) aged over 65 years residing in San Antonio, Texas. We tested the effect of social connectedness, self-esteem and socioeconomic status on participant retention in both ethnic groups. In MAs only, we analyzed whether acculturation and assimilation moderated these associations and/or had a direct effect on participant retention. ^ Low income, low frequency of social contacts and length of recruitment interval were significant predictors of non-completer status. Participants with low levels of social contacts were almost twice as likely as those with high levels of social contacts to be non-completers, even after adjustment for age, sex, ethnic group, education, household income, and recruitment interval (OR = 1.95, 95% CI: 1.26–3.01, p = 0.003). Recruitment interval consistently and strongly predicted non-completer status in all the models tested. Depending on the model, for each year beyond baseline there was a 25–33% greater likelihood of non-completion. The only significant interaction, or moderating, effect observed was between social contacts and cultural values among MAs. Specifically, MAs with both low social contacts and low acculturation on cultural values (i.e., placed high value on preserving Mexican cultural origins) were three and half times more likely to be non-completers compared with MAs in other subgroups comprised of the combination of these variables, even after adjustment for covariates. ^ Long term studies with older and minority participants are challenging for participant retention. Strategies can be designed to enhance retention by paying special attention to participants with low social contacts and, in MAs, participants with both low social contacts and low acculturation on cultural values. Minimizing the time interval between baseline and follow-up recruitment, and maintaining frequent contact with participants during this interval should also be is integral to the study design.^
Resumo:
Strategies are compared for the development of a linear regression model with stochastic (multivariate normal) regressor variables and the subsequent assessment of its predictive ability. Bias and mean squared error of four estimators of predictive performance are evaluated in simulated samples of 32 population correlation matrices. Models including all of the available predictors are compared with those obtained using selected subsets. The subset selection procedures investigated include two stopping rules, C$\sb{\rm p}$ and S$\sb{\rm p}$, each combined with an 'all possible subsets' or 'forward selection' of variables. The estimators of performance utilized include parametric (MSEP$\sb{\rm m}$) and non-parametric (PRESS) assessments in the entire sample, and two data splitting estimates restricted to a random or balanced (Snee's DUPLEX) 'validation' half sample. The simulations were performed as a designed experiment, with population correlation matrices representing a broad range of data structures.^ The techniques examined for subset selection do not generally result in improved predictions relative to the full model. Approaches using 'forward selection' result in slightly smaller prediction errors and less biased estimators of predictive accuracy than 'all possible subsets' approaches but no differences are detected between the performances of C$\sb{\rm p}$ and S$\sb{\rm p}$. In every case, prediction errors of models obtained by subset selection in either of the half splits exceed those obtained using all predictors and the entire sample.^ Only the random split estimator is conditionally (on $\\beta$) unbiased, however MSEP$\sb{\rm m}$ is unbiased on average and PRESS is nearly so in unselected (fixed form) models. When subset selection techniques are used, MSEP$\sb{\rm m}$ and PRESS always underestimate prediction errors, by as much as 27 percent (on average) in small samples. Despite their bias, the mean squared errors (MSE) of these estimators are at least 30 percent less than that of the unbiased random split estimator. The DUPLEX split estimator suffers from large MSE as well as bias, and seems of little value within the context of stochastic regressor variables.^ To maximize predictive accuracy while retaining a reliable estimate of that accuracy, it is recommended that the entire sample be used for model development, and a leave-one-out statistic (e.g. PRESS) be used for assessment. ^
Resumo:
Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth common malignancy in the world, with high rates of developing second primary malignancy (SPM) and moderately low survival rates. This disease has become an enormous challenge in the cancer research and treatments. For HNSCC patients, a highly significant cause of post-treatment mortality and morbidity is the development of SPM. Hence, assessment of predicting the risk for the development of SPM would be very helpful for patients, clinicians and policy makers to estimate the survival of patients with HNSCC. In this study, we built a prognostic model to predict the risk of developing SPM in patients with newly diagnosed HNSCC. The dataset used in this research was obtained from The University of Texas MD Anderson Cancer Center. For the first aim, we used stepwise logistic regression to identify the prognostic factors for the development of SPM. Our final model contained cancer site and overall cancer stage as our risk factors for SPM. The Hosmer-Lemeshow test (p-value= 0.15>0.05) showed the final prognostic model fit the data well. The area under the ROC curve was 0.72 that suggested the discrimination ability of our model was acceptable. The internal validation confirmed the prognostic model was a good fit and the final prognostic model would not over optimistically predict the risk of SPM. This model needs external validation by using large data sample size before it can be generalized to predict SPM risk for other HNSCC patients. For the second aim, we utilized a multistate survival analysis approach to estimate the probability of death for HNSCC patients taking into consideration of the possibility of SPM. Patients without SPM were associated with longer survival. These findings suggest that the development of SPM could be a predictor of survival rates among the patients with HNSCC.^