2 resultados para refined multiscale entropy
em DigitalCommons@The Texas Medical Center
Resumo:
Purpose. The central concepts in pressure ulcer risk are exposure to external pressure caused by inactivity and tissue tolerance to pressure, a factor closely related to blood flow. Inactivity measures are effective in predicting pressure ulcer risk. The purpose of the study is to evaluate whether a physiological measure of skin blood flow improves pressure ulcer risk prediction. Skin temperature regularity and self-similarity, as proxy measures of blood flow, and not previously described, may be undefined pressure ulcer risk factors. The specific aims were to determine whether a sample of nursing facility residents at high risk of pressure ulcers classified using the Braden Scale for Pressure Sore Risk© differ from a sample of low risk residents according to (1) exposure to external pressure as measured by resident activity, (2) tissue tolerance to external pressure as measured by skin temperature, and (3) skin temperature fluctuations and recovery in response to a commonly occurring stressor, bathing and additionally whether (4) scores on the Braden Scale mobility subscale score are related to entropy and the spectral exponent. ^ Methods. A two group observational time series design was used to describe activity and skin temperature regularity and self-similarity, calculating entropy and the spectral exponent using detrended fluctuation analysis respectively. Twenty nursing facility residents wore activity and skin temperature monitors for one week. One bathing episode was observed as a commonly occurring stressor for skin temperature.^ Results. Skin temperature multiscale entropy (MSE), F(1, 17) = 5.55, p = .031, the skin temperature spectral exponent, F(1, 17) = 6.19, p = .023, and the activity mean MSE, F(1, 18) = 4.52, p = .048 differentiated the risk groups. The change in skin temperature entropy during bathing was significant, t(16) = 2.55, p = .021, (95% CI, .04-.40). Multiscale entropy for skin temperature was lowest in those who developed pressure ulcers, F(1, 18) = 35.14, p < .001.^ Conclusions. This study supports the tissue tolerance component of the Braden and Bergstrom conceptual framework and shows differences in skin temperature multiscale entropy between pressure ulcer risk categories, pressure ulcer outcome, and during a commonly occurring stressor. ^
Resumo:
Empirical evidence and theoretical studies suggest that the phenotype, i.e., cellular- and molecular-scale dynamics, including proliferation rate and adhesiveness due to microenvironmental factors and gene expression that govern tumor growth and invasiveness, also determine gross tumor-scale morphology. It has been difficult to quantify the relative effect of these links on disease progression and prognosis using conventional clinical and experimental methods and observables. As a result, successful individualized treatment of highly malignant and invasive cancers, such as glioblastoma, via surgical resection and chemotherapy cannot be offered and outcomes are generally poor. What is needed is a deterministic, quantifiable method to enable understanding of the connections between phenotype and tumor morphology. Here, we critically assess advantages and disadvantages of recent computational modeling efforts (e.g., continuum, discrete, and cellular automata models) that have pursued this understanding. Based on this assessment, we review a multiscale, i.e., from the molecular to the gross tumor scale, mathematical and computational "first-principle" approach based on mass conservation and other physical laws, such as employed in reaction-diffusion systems. Model variables describe known characteristics of tumor behavior, and parameters and functional relationships across scales are informed from in vitro, in vivo and ex vivo biology. We review the feasibility of this methodology that, once coupled to tumor imaging and tumor biopsy or cell culture data, should enable prediction of tumor growth and therapy outcome through quantification of the relation between the underlying dynamics and morphological characteristics. In particular, morphologic stability analysis of this mathematical model reveals that tumor cell patterning at the tumor-host interface is regulated by cell proliferation, adhesion and other phenotypic characteristics: histopathology information of tumor boundary can be inputted to the mathematical model and used as a phenotype-diagnostic tool to predict collective and individual tumor cell invasion of surrounding tissue. This approach further provides a means to deterministically test effects of novel and hypothetical therapy strategies on tumor behavior.