2 resultados para redox titrations
em DigitalCommons@The Texas Medical Center
Resumo:
The role of the cytochrome (CYT) P-450 mixed-function oxidase (MFO) in the biotransformation of hexachlorobenzene (HCB) was investigated, since in vivo interaction between this enzyme and chemical is very probable. HCB is a type I substrate with (Fe('3+)) CYT P-450 isozymes present in untreated, b-naphthoflavone (BNF) and phenobarbital (PB) induced rat liver microsomes. HCB dependent and saturable type I binding titrations yield spectral dissociation constants (K(,s)) of 180 and 83 uM for the isozymes present in untreated and PB induced microsomes, respectively. Purified CYT P-450b, the major isozyme induced by PB, produces HCB dependent and saturable type I spectra with a K(,s) of 0.38 uM.^ CYT P-450 mediated reductive dehalogenation occurs in microsomes and purified/reconstituted MFO systems and produces pentachlorobenzene (PCB) as the initial and major metabolite under both aerobic and anaerobic conditions. In microsomal reactions secondary metabolism of PCB occurs in the presence of oxygen. Pentachlorophenol (PCP) is produced only in aerobic reactions with PB induced microsomes with a concomitant decrease in PCB production. PCP is not detected in aerobic reactions with BNF induced microsomes, although PCB production is decreased compared to anaerobic conditions. A reaction scheme for the production of phenolic metabolities from PCB is deduced.^ CYT P-450 dependent and NADPH independent modes of PCB production occur with purified/reconstituted MFO systems and are consistent with dehalogenation pathways observed with microsomal experiments. The NADPH independent production of PCB requires native microsomal or purified MFO protein components and may be the result of nucleophilic displacement of a chlorine atom from HCB mediated or coupled with redox active functions (primary, secondary, tertiary and quarternary structures) of the proteins. CYT P-450 dependent production of PCB from HCB is isozyme dependent: CYT P-450c = CYT P-450d > CYT P-450a > CYT 450b. The low apparent specific activity may be due to non-optimal reconstitution conditions (e.g., isozyme choice and requirement of other microsomal elecron transport components) and secondary metabolism of PCB and the phenols derived from PCB. CYT P-450 mediated dehalogenation may be catalyzed through attack, by the iron oxene (postulated intermediate of CYT P-450 monooxygenations), at the chlorines of HCB instead of the aromatic nucleus. (Abstract shortened with permission of author.) ^
Resumo:
Increasing attention has been given to the connection between metabolism and cancer. Under aerobic conditions, normal cells predominantly use oxidative phosphorylation for ATP generation. In contrast, increase of glycolytic activity has been observed in various tumor cells, which is known as Warburg effect. Cancer cells, compared to normal cells, produce high levels of Reactive Oxygen Species (ROS) and hence are constantly under oxidative stress. Increase of oxidative stress and glycolytic activity in cancer cells represent major biochemical alterations associated with malignant transformation. Despite prevalent upregulation of ROS production and glycolytic activity observed in various cancer cells, underlying mechanisms still remain to be defined. Oncogenic signals including Ras has been linked to regulation of energy metabolism and ROS production. Current study was initiated to investigate the mechanism by which Ras oncogenic signal regulates cellular metabolism and redox status. A doxycycline inducible gene expression system with oncogenic K-ras transfection was constructed to assess the role played by Ras activation in any given studied parameters. Data obtained here reveals that K-ras activation directly caused mitochondrial dysfunction and ROS generation, which appeared to be mechanistically associated with translocation of K-ras to mitochondria and the opening of the mitochondrial permeability transition pore. K-ras induced mitochondrial dysfunction led to upregulation of glycolysis and constitutive activation of ROS-generating NAD(P)H Oxidase (NOX). Increased oxidative stress, upregulation of glycolytic activity, and constitutive activated NOX were also observed in the pancreatic K-ras transformed cancer cells compared to their normal counterparts. Compared to non-transformed cells, the pancreatic K-ras transformed cancer cells with activated NOX exhibited higher sensitivity to capsaicin, a natural compound that appeared to target NOX and cause preferential accumulation of oxidative stress in K-ras transformed cells. Taken together, these findings shed new light on the role played by Ras in the road to cancer in the context of oxidative stress and metabolic alteration. The mechanistic relationship between K-ras oncogenic signals and metabolic alteration in cancer will help to identify potential molecular targets such as NAD(P)H Oxidase and glycolytic pathway for therapeutic intervention of cancer development. ^