11 resultados para recombinant expression penaeidin
em DigitalCommons@The Texas Medical Center
Resumo:
The cytochromes P450 (P450) comprise a superfamily of hemoproteins that function in concert with NADPH-cytochrome P450 reductase (P450-reductase) to metabolize both endogenous and exogenous compounds. Many pharmacological agents undergo phase I metabolism by this P450 and P450-reductase monooxygenase system. Phase I metabolism ensures that these highly hydrophobic xenobiotics are made more hydrophilic, and hence easier to extrude from the body. While the majority of phase I metabolism occurs in the liver, metabolism in extrahepatic organ-systems like the intestine, kidney, and brain can have important roles in drug metabolism and/or efficacy. ^ While P450-mediated phase I metabolism has been well studied, investigators have only recently begun to elucidate what physiological roles P450 may have. One way to approach this question is to study P450s that are highly or specifically expressed in extrahepatic tissues. In this project I have studied the role of a recently cloned P450 family member, P450 2D18, that was previously shown to be expressed in the rat brain and kidney, but not in the liver. To this end, I have used the baculovirus expression system to over-express recombinant P450 2D18 and purified the functional enzyme using nickel and hydroxylapatite chromatography. SDS-PAGE analysis indicated that the enzyme was purified to electrophoretic homogeneity and Western analysis showed cross-reactivity with rabbit anti-human P450 2D6. Carbon monoxide difference spectra indicated that the purified protein contained no denatured P450 enzyme; this allowed for further characterization of the substrates and metabolites formed by P450 2D18-mediated metabolism. ^ Because P450 2D18 is expressed in brain, we characterized the activity toward several psychoactive drugs including the antidepressants imipramine and desipramine, and the anti-psychotic drugs chlorpromazine and haloperidol. P450 2D18 preferentially catalyzed the N-demethylation of imipramine, desipramine, and chlorpromazine. This is interesting given the fact that other P450 isoforms form multiple metabolites from such compounds. This limited metabolic profile might suggest that P450 2D18 has some unique function, or perhaps a role in endobiotic metabolism. ^ Further analysis of possible endogenous substrates for P450 2D18 led to the identification of dopamine and arachidonic acid as substrates. It was shown that P450 2D18 catalyzes the oxidation of dopamine to aminochrome, and that the enzyme binds dopamine with an apparent KS value of 678 μM, a value well within reported dopamine concentration in brain dopaminergic systems. Further, it was shown that P450 2D18 binds arachidonic acid with an apparent KS value of 148 μM, and catalyzes both the ω-hydroxylation and epoxygenation of arachidonic acid to metabolites that have been shown to have vasoactive properties in brain, kidney, and heart tissues. These data provide clues for endogenous roles of P450 within the brain, and possible involvement in the pathogenesis of Parkinson's disease. ^
Resumo:
BACKGROUND: In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA6679 (RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. METHODS: We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. RESULTS: The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene expression in the mice livers, which did not produce the therapeutic effects on alteration the lipid levels or the inhibition of atherosclerosis development. In contrast, the ribozyme RB15 RNA mediated by scAAV2-TTR-RB15 vector was expressed immediately at day-1 after transduction in HepG2 cells. The apoB mRNA levels were decreased 47% (p = 0.001), compared to the control vector scAAV2-TTR-RB15-mutant. CONCLUSION: This study provided evidence that the rAAV2 single-strand vector mediated a prolonged but not efficient transduction in mouse liver. However, the scAAV2 double-strand vector mediated a rapid and efficient gene expression in liver cells. This strategy using scAAV2 vectors represents a better approach to express small molecules such as ribozyme.
Resumo:
Melanoma is known to be highly resistant to chemotherapy. Treatment with high dose IL-2 has shown significant clinical benefit in a minority of metastatic melanoma patients and has lead to long term survival in a few cases. However, this treatment is associated with excessive multiorgan toxicities, which severely limits its use. We hypothesize that one mechanism of effective IL-2 therapy is through the direct upregulation of IL-24 production in melanoma tumors and subsequent IL-24 mediated tumor growth suppression. Five melanoma cell lines were treated with high dose recombinant hIL-2 at 1000U/ml. Three of the cell lines (A375, WM1341, WM793) showed statistically significant increases in their levels of IL-24 protein when measured by Western blotting, while the remaining two lines (WM35, MeWo) remained negative for IL-24 message and protein. This increase in IL-24 was abolished by either preincubating with an anti-IL-2 antibody or by blocking the IL-2 receptor directly with antibodies against the receptor chains. We also demonstrated by ELISA that these three cell lines secrete IL-24 protein in higher amounts when stimulated with IL-2 than do untreated cells. These cells were found to contain IL-2R beta and gamma message by RT-PCR and also expressed higher levels of IL-24 when treated with IL-15, which shares the IL-2R beta chain. Thus we propose that IL-2 is signaling through IL-2R beta on some melanoma cells to upregulate IL-24 protein expression. To address the biological function of IL-2 in melanoma cells, five cell lines were treated with IL-2 and cell viability determined. Cell growth was found to be significantly decreased by day 4 in the IL-24 positive cell lines while no effect on growth was seen in WM35 or MeWo. Incubating the cells with anti-IL-24 antibody or transfecting with IL-24 siRNA effectively negated the growth suppression seen with IL-2. These data support our hypothesis that in addition to its immunotherapeutic effects, IL-2 also acts directly on some melanoma tumors and that the IL-24 and IL-2R beta status of a tumor may be useful in predicting patient response to high dose IL-2.
Resumo:
In this report we test the hypothesis that long-term virus-induced alterations in CYP occur from changes initiated by the virus that may not be related to the immune response. Enzyme activity, protein expression and mRNA of CYP3A2, a correlate of human CYP3A4, and CYP2C11, responsive to inflammatory mediators, were assessed 0.25, 1, 4, and 14 days after administration of several different recombinant adenoviruses at a dose of 5.7 x 1012 virus particles (vp)/kg to male Sprague Dawley rats. Wild type adenovirus, containing all viral genes, suppressed CYP3A2 and 2C11 activity by 37% and 39%, respectively within six hours. Levels fell to 67% (CYP3A2) and 79% (CYP2C11) of control by 14 days (p
Resumo:
Medulloblastoma, one of the most malignant brain tumors in children, is thought to arise from undifferentiated neural stem/progenitor cells (NSCs) present in the external granule layer of the cerebellum. However, the mechanism of tumorigenesis remains unknown for the majority of medulloblastomas. In this study, we found that many human medulloblastomas express significantly elevated levels of both myc oncogenes, regulators of neural progenitor proliferation, and REST/NRSF, a transcriptional repressor of neuronal differentiation genes. Previous studies have shown that neither c-Myc nor REST/NRSF alone could cause tumor formation. To determine whether c-Myc and REST/NRSF act together to cause medulloblastomas, we used a previously established cell line derived from external granule layer stem cells transduced with activated c-myc (NSC-M). These immortalized NSCs were able to differentiate into neurons in vitro. In contrast, when the cells were engineered to express a doxycycline-regulated REST/NRSF transgene (NSC-M-R), they no longer underwent terminal neuronal differentiation in vitro. When injected into intracranial locations in mice, the NSC-M cells did not form tumors either in the cerebellum or in the cerebral cortex. In contrast, the NSC-M-R cells did produce tumors in the cerebellum, the site of human medulloblastoma formation, but not when injected into the cerebral cortex. Furthermore, the NSC-M-R tumors were blocked from terminal neuronal differentiation. In addition, countering REST/NRSF function blocked the tumorigenic potential of NSC-M-R cells. To our knowledge, this is the first study in which abnormal expression of a sequence-specific DNA-binding transcriptional repressor has been shown to contribute directly to brain tumor formation. Our findings indicate that abnormal expression of REST/NRSF and Myc in NSCs causes cerebellum-specific tumors by blocking neuronal differentiation and thus maintaining the "stemness" of these cells. Furthermore, these results suggest that such a mechanism plays a role in the formation of human medulloblastoma.
Resumo:
Mutations in cartilage oligomeric matrix protein (COMP), a large extracellular glycoprotein expressed in musculoskeletal tissues, cause two skeletal dysplasias, pseudoachondroplasia and multiple epiphyseal dysplasia. These mutations lead to massive intracellular retention of COMP, chondrocyte death and loss of growth plate chondrocytes that are necessary for linear growth. In contrast, COMP null mice have only minor growth plate abnormalities, normal growth and longevity. This suggests that reducing mutant and wild-type COMP expression in chondrocytes may prevent the toxic cellular phenotype causing the skeletal dysplasias. We tested this hypothesis using RNA interference to reduce steady state levels of COMP mRNA. A panel of shRNAs directed against COMP was tested. One shRNA (3B) reduced endogenous and recombinant COMP mRNA dramatically, regardless of expression levels. The activity of the shRNA against COMP mRNA was maintained for up to 10 weeks. We also demonstrate that this treatment reduced ER stress. Moreover, we show that reducing steady state levels of COMP mRNA alleviates intracellular retention of other extracellular matrix proteins associated with the pseudoachondroplasia cellular pathology. These findings are a proof of principle and the foundation for the development of a therapeutic intervention based on reduction of COMP expression.
Resumo:
Vascular endothelial growth factor (VEGF) is being investigated as a potential interventional therapy for spinal cord injury (SCI). In the current study, we examined SCI-induced changes in VEGF protein levels using Western blot analysis around the epicenter of injury. Our results indicate a significant decrease in the levels of VEGF(165) and other VEGF isoforms at the lesion epicenter 1 day after injury, which was maintained up to 1 month after injury. We also examined if robust VEGF(165) decrease in injured spinal cords affects neuronal survival, given that a number of reported studies show neuroprotective effect of this VEGF isoform. However, exogenously administered VEGF(165) at the time of injury did not affect the number of sparred neurons. In contrast, exogenous administration of VEGF antibody that inhibits actions of not only VEGF(165) but also of several other VEGF isoforms, significantly decreased number of sparred neurons after SCI. Together these results indicate a general reduction of VEGF isoforms following SCI and that isoforms other than VEGF(165) (e.g., VEGF(121) and/or VEGF(189)) provide neuroprotection, suggesting that VEGF(165) isoform is likely involved in other pathophysiological process after SCI.
Resumo:
The placenta is the site of synthesis of various peptide and steroid hormones related to pregnancy. Human placental lactogen (hPL) is the predominant peptide hormone secreted by term placenta and its synthesis is tissue-specific and coupled to placenta development. The objective of this work was to study the structure and expression of the hPL.^ Poly(A('+))RNA from human term placenta was translated in a mouse-derived cell-free system. A major band corresponding to pre-hPL and a minor band comigrating with mature hPL, represent (TURN)15% of the total radioactively labeled proteins. Analysis of the poly(A('+))RNA showed a prominent band at approximately 860 nucleotides. A corresponding band was observed in Northern blots of total RNA, hybridized with {('32)P}-labeled recombinant plasmid containing a portion of hPL cDNA. Similar analyses of nuclear RNA showed at least four additional bands at 990, 1200, 1460 and 1760 nucleotides, respectively, which are likely precursors of hPL mRNA. Poly(A('+))RNA was used to construct a cDNA library, of which approximately 5% of the clones were found to hybridize to hPL DNA sequences. Heteroduplexes constructed between a clone containing a 815 bp hPL cDNA insert and a hPL genomic DNA clone revealed four small intervening sequences which can account for the lengths observed in hnRNA molecules.^ Recombinant plasmid HCS-pBR322 containing a 550 bp insert of a cDNA transcript of human placental lactogen (hPL) mRNA was ('3)H-labeled an hybridized in situ to human chromosome preparations. These experiments allowed assignment of the hPL and growth hormone (hGH) genes, which have over 90% nucleotide homology in their coding sequences, to band q22-24 of chromosome 17. A gene copy number experiment showed that both genes are present in (TURN)3 copies per haploid genome.^ Experiments were designed to determine if all members of the hPL gene cluster, consisting of four non-allelic genes, are transcribed in term placenta. Advantage was taken of differences in restriction endonuclease sites in the coding portions of the different hPL genes, to distinguish the putative cDNAs of the transcriptionally active genes. Two genes were found to be represented in the cDNA library and their cDNA transcripts were isolated and characterized. Three independent methods showed that their corresponding mRNAs are about equally represented in the hPL mRNA population. The two cDNAs code for prehPL proteins which differ at a single amino acid position. However the secreted hPLs have identical amino acid sequences. A tetramer insertion duplication was found in a palindrome area of the 3' untranslated region of one of the hPL mRNAs. ^
Resumo:
Previous studies have led to the development of allochimeric class I MHC proteins as agents that effectively induce donor-specific transplantation tolerance in a rat system with or without additional immunosuppression. Within the α1-helical region of RT1.Au, an epitope that conferred immunologic tolerance was discovered. Studies presented herein were designed to test our central hypothesis that allochimeric proteins onfer tolerance in a mouse model. To test this hypothesis, portal vein (PV) injection of wild-type H2Kd and H2Dd proteins were produced in a bacterial expression system and found to specifically prolong the survival of BALB/c (H2d) heart allografts in C57BL/10 (H2b) recipients. Although a single PV injection of 50 μg α1–α 3 H2Kd alone was ineffective, 50 μg α1 –α3 alone slightly prolonged BALB/c heart allograft survivals. In contrast, the combination of 25 μg α1–α 3 H2Kd and 25 μg α1–α 3 H2Dd proteins prolonged BALB/c graft survivals to 20.2 ± 6.4 days (p < 0.004). The effect was donor-specific, since a combination of 25 μg α1–α3 H2Kd and 25 μg α1–α3 H2Dd proteins failed to affect survivals of third-party C3H (H2k k) heart allografts, namely 9.0 ± 0.0 days in treated versus 7.8 ± 0.5 days in untreated hosts. Thus, the combination of two H2K d and H2Dd proteins is more effective in prolonging allograft survival than a single protein produced in a bacterial expression system. A single PV injection (day 0) of 25 μg α1–α 2 H2Kd and 25 μg α1–α 2 H2Dd proteins to C57BL/10 mice prolonged the survival of BALB/c heart allografts to 22.4 ± 4.5 days. Within a WF to ACI rat heart allograft system, a single PV injection of 20 μg 70–77 u-RT1.Aa induced specific tolerance of allografts. This therapy could be combined with CsA to induce transplantation tolerance. However, combination of 70–77u-RT1.Aa with CTLA4Ig, rapamycin, or AG-490 effectively blocked the induction of transplantation tolerance. Tolerance generated by allochimeric protein could be adoptively transferred to naive recipients. Intragraft cytokine mRNA levels showed a bias towards a Th2-type phenotype. Additionally, studies of cytokine signaling and activation of transcription factors revealed a requirement that these pathways remain available for signaling in order for transplantation tolerance to occur. These studies suggest that the generation of regulatory cells are required for the induction of transplantation tolerance through the use of allochimeric proteins. ^
Resumo:
Human peripheral blood monocytes (HPBM) were isolated by centrifugal elutriation from mononuclear cell enriched fractions after routine plateletapheresis and the relationship between maturation of HPBM to macrophage-like cells and activation for tumoricidal activity determined. HPBM were cultured for various times in RPMI 1640 supplemented with 5% pooled human AB serum and cytotoxicity to $\sp{125}$IUDR labeled A375M, a human melanoma cell line, and TNF-$\alpha$ release determined by cytolysis of actinomycin D treated L929 cells. Freshly isolated HPBM or those exposed to recombinant IFN-$\gamma$(1.0 U/ml) were not cytolytic and did not release TNF-$\alpha$ into culture supernatants. Exposure to bacterial lipopolysaccharide (LPS, 1.0 $\upsilon$g/ml) stimulated cytolytic activity and release of TNF-$\alpha$. Maximal release of TNF-$\alpha$ protein occurred at 8 hrs and returned to baseline by 72 hrs. Expression of TNF-$\alpha$ protein was determined by Western blotting. Neither freshly isolated nor IFN-$\gamma$ treated HPBM expressed TNF protein at any time during in vitro culture. LPS treated HPBM maximally expressed the 17KD TNF-$\alpha$ protein at 8 hrs, and protein was not detected after 36 hrs of in vitro culture. Expression of TNF-$\alpha$ mRNA was determined by Northern blotting. Freshly isolated HPBM express TNF-$\alpha$ mRNA which decays to basal levels by 6 hrs of in vitro culture. IFN-$\gamma$ treatment maintains TNF-$\alpha$ mRNA expression for up to 48 hrs of culture, after which it is undetectable. LPS induces TNF-$\alpha$ mRNA after 30 minutes of exposure with maximal accumulation occurring between 4 to 8 hrs. TNF mRNA was not detected in control HPBM at any time after 6 hrs or IFN-$\gamma$ treated HPBM after 48 hrs of in vitro culture. A pulse of LPS the last 24 hrs of in vitro culture induces the accumulation of TNF-$\alpha$ mRNA in HPBM cultured for 3, 5, and 7 days, with the magnitude of induction decreasing approximately 10 fold between 3 and 7 days. Induction of TNF-$\alpha$ mRNA occurred in the absence of detectable TNF-$\alpha$ protein or supernatant activity. Maturation of HPBM to macrophage-like cells controls competence for activation, magnitude and duration of the activation response. ^
Resumo:
The Bacillus anthracis toxin genes, cya, lef , and pag, can be viewed as a regulon, in which transcription of all three genes is activated in trans by the same regulatory gene, atxA, in response to the same signal, CO2. I determined that several phenotypes are associated with the atxA gene. In addition to being toxin-deficient, an atxA -null mutant grows poorly on minimal media and sporulates early compared to the parent strain. Furthermore, an atxA-null mutant has an altered 2-D gel protein profile. I used a genetic approach to find additional atxA-regulated genes. Random transcriptional lacZ fusions were generated in B. anthracis using transposon Tn 917-LTV3. Transposon-insertion libraries were screened for mutants expressing increased β-galactosidase activity in 5% CO2. Introduction of an atxA-null mutation in these mutants revealed that 79% of the CO2-regulated fusions were also atxA-dependent. DNA sequence analysis of transposon insertion sites in mutants carrying CO 2/atxA-regulated fusions revealed ten mutants harboring transposon insertions in loci distinct from the toxin genes. The majority of the tcr (toxin co-regulated) loci mapped within the pXO1 pathogenicity island. These results indicate a clear association of atxA with CO2-enhanced gene expression in B. anthracis and provide evidence that atxA regulates genes other than the structural genes for the anthrax toxin proteins. ^ Characterization of one tcr locus revealed a new regulatory gene, pagR. The pagR gene (300 nt) is located downstream of pag. pagR is cotranscribed with pag and is responsible for autogenous control of the operon. pagR also represses expression of cya and lef. Repression of toxin gene expression by pagR may be mediated by atxA. The steady state level of atxA mRNA is increased in a pagR mutant. Recombinant PagR protein purified from Escherichia coli did not specifically bind the promoter regions of pagA or atxA. An unidentified factor in B. anthracis crude extracts, however, was able to bind the atxA promoter in the absence of PagR or AtxA. These investigations increase our knowledge of virulence regulation in B. anthracis and ultimately will lead to a better understanding of anthrax disease. ^