5 resultados para reactive navigation system
em DigitalCommons@The Texas Medical Center
Resumo:
Agrobacterium VirB2 pilin is required for assembly of the VirB/VirD4 type IV secretion system (T4SS). The propilin is processed by signal sequence cleavage and covalent linkage of the N and C termini, and the cyclized pilin integrates into the inner membrane (IM) as a pool for assembly of the secretion channel and T pilus. Here, by use of the substituted cysteine accessibility method (SCAM), we defined the VirB2 IM topology and then identified distinct contributions of the T4SS ATPase subunits to the pilin structural organization. Labeling patterns of Cys-substituted pilins exposed to the membrane-impermeative, thiol-reactive reagent 3-(N-maleimidopropionyl)biocytin (MPB) supported a topology model in which two hydrophobic stretches comprise transmembrane domains, an intervening hydrophilic loop (residues 90 to 94) is cytoplasmic, and the hydrophilic N and C termini joined at residues 48 and 121 form a periplasmic loop. Interestingly, the VirB4 ATPase, but not a Walker A nucleoside triphosphate (NTP) binding motif mutant, induced (i) MPB labeling of Cys94, a residue that in the absence of the ATPase is located in the cytoplasmic loop, and (ii) release of pilin from the IM upon osmotic shock. These findings, coupled with evidence for VirB2-VirB4 complex formation by coimmunoprecipitation, support a model in which VirB4 functions as a dislocation motor to extract pilins from the IM during T4SS biogenesis. The VirB11 ATPase functioned together with VirB4 to induce a structural change in the pilin that was detectable by MPB labeling, suggestive of a role for VirB11 as a modulator of VirB4 dislocase activity.
Resumo:
Viral invasion of the central nervous system (CNS) and development of neurological symptoms is a characteristic of many retroviruses. The mechanism by which retrovirus infection causes neurological dysfunction has yet to be fully elucidated. Given the complexity of the retrovirus-mediated neuropathogenesis, studies using small animal models are extremely valuable. Our laboratory has used a mutant moloney murine leukemia retrovirus, ts1-mediated neurodegneration. We hypothesize that astrocytes play an important role in ts1-induced neurodegeneration since they are retroviral reservoirs and supporting cells for neurons. It has been shown that ts1 is able to infect astrocytes in vivo and in vitro. Astrocytes, the dominant cell population in the CNS, extend their end feet to endothelial cells and neuronal synapse to provide neuronal support. Signs of oxidative stress in the ts1-infected CNS have been well-documented from previous studies. After viral infection, retroviral DNA is generated from its RNA genome and integrated into the host genome. In this study, we identified the life cycle of ts1 in the infected astrocytes. During the infection, we observed reactive oxygen species (ROS) upregulations: one at low levels during the early infection phase and another at high levels during the late infection phase. Initially we hypothesized that p53 might play an important role in ts1-mediated astrocytic cell death. Subsequently, we found that p53 is unlikely to be involved in the ts1-mediated astrocytic cell death. Instead, p53 phosphorylation was increased by the early ROS upregulation via ATM, the protein encoded by the ataxia-telangiectasia (A-T) mutated gene. The early upregulation of p53 delayed viral gene expression by suppressing expression of the catalytic subunit of NADPH oxidase (NOX). We further demonstrated that the ROS upregulation induced by NOX activation plays an important role in establishing retroviral genome into the host. Inhibition of NOX decreased viral replication and delayed the onset of pathological symptoms in ts1-infected mice. These observations lead us to conclude that suppression of NOX not only prevents the establishment of the retrovirus but also decreases oxidative stress in the CNS. This study provides us with new perspectives on the retrovirus-host cell interaction and sheds light on retrovirus-induced neurodegeneration as a result of the astrocyte-neuron interaction.
Resumo:
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor with poor prognosis due in part to drug resistance and high incidence of tumor recurrence. The drug resistant and cancer recurrence phenotype may be ascribed to the presence of glioblastoma stem cells (GSCs), which seem to reside in special stem-cell niches in vivo and require special culture conditions including certain growth factors and serum-free medium to maintain their stemness in vitro. Exposure of GSCs to fetal bovine serum (FBS) can cause their differentiation, the underlying mechanism of which remains unknown. Reactive oxygen species (ROS) play an important role in normal stem cell differentiation, but their role in affecting cancer stem cell fate remains unclear. Whether the metabolic characteristics of GSCs are different from other glioblastoma cells and can be targeted are also unknown. In this study, we used several stem-like glioblastoma cell lines derived from clinical tissues by typical neurosphere culture system or orthotopic xenografts, and showed that addition of fetal bovine serum to the medium induced an increase of ROS, leading to aberrant differentiation and decreases of stem cell markers such as CD133. We found that exposure of GSCs to serum induced their differentiation through activation of mitochondrial respiration, leading to an increase in superoxide (O2-) generation and a profound ROS stress response manifested by upregulation of oxidative stress response pathway. This increase in mitochondrial ROS led to a down-regulation of molecules including SOX2, and Olig2, and Notch1 that are important for stem cell function and an upregulation of mitochondrial superoxide dismutase SOD2 that converts O2- to H2O2. Neutralization of ROS by antioxidant N-acetyl-cysteine in the serum-treated GSCs suppressed the increase of superoxide and partially rescued the expression of SOX2, Olig2, and Notch1, and prevented the serum-induced differentiation phenotype. Additionally, GSCs showed high dependence on glycolysis for energy production. The combination of a glycolytic inhibitor 3-BrOP and a chemotherapeutic agent BCNU depleted cellular ATP and inhibited the repair of BCNU-induced DNA damage, achieving strikingly synergistic killing effects in drug resistant GSCs. This study uncovers the metabolic properties of glioblastoma stem cells and suggests that mitochondrial function and cellular redox status may profoundly affect the fates of glioblastoma stem cells via a ROS-mediated mechanism, and that the active glycolytic metabolism in cancer stem cells may provide a biochemical basis for developing novel therapeutic strategies to effectively eliminate GSCs.
Resumo:
Autoimmune diseases are a group of inflammatory conditions in which the body's immune system attacks its own cells. There are over 80 diseases classified as autoimmune disorders, affecting up to 23.5 million Americans. Obesity affects 32.3% of the US adult population, and could also be considered an inflammatory condition, as indicated by the presence of chronic low-grade inflammation. C-reactive protein (CRP) is a marker of inflammation, and is associated with both adiposity and autoimmune inflammation. This study sought to determine the cross-sectional association between obesity and autoimmune diseases in a large, nationally representative population derived from NHANES 2009–10 data, and the role CRP might play in this relationship. Overall, the results determined that individuals with autoimmune disease were 2.11 times more likely to report being overweight than individuals without autoimmune disease and that CRP had a mediating affect on the obesity-autoimmune relationship. ^
Resumo:
Cells govern their activities and modulate their interactions with the environment to achieve homeostasis. The heat shock response (HSR) is one of the most well studied fundamental cellular responses to environmental and physiological challenges, resulting in rapid synthesis of heat shock proteins (HSPs), which serve to protect cellular constituents from the deleterious effects of stress. In addition to its role in cytoprotection, the HSR also influences lifespan and is associated with a variety of human diseases including cancer, aging and neurodegenerative disorders. In most eukaryotes, the HSR is primarily mediated by the highly conserved transcription factor HSF1, which recognizes target hsp genes by binding to heat shock elements (HSEs) in their promoters. In recent years, significant efforts have been made to identify small molecules as potential pharmacological activators of HSF1 that could be used for therapeutic benefit in the treatment of human diseases relevant to protein conformation. However, the detailed mechanisms through which these molecules drive HSR activation remain unclear. In this work, I utilized the baker's yeast Saccharomyces cerevisiae as a model system to identify a group of thiol-reactive molecules including oxidants, transition metals and metalloids, and electrophiles, as potent activators of yeast Hsf1. Using an artificial HSE-lacZ reporter and the glucocorticoid receptor system (GR), these diverse thiol-reactive compounds are shown to activate Hsf1 and inhibit Hsp90 chaperone complex activity in a reciprocal, dose-dependent manner. To further understand whether cells sense these reactive compounds through accumulation of unfolded proteins, the proline analog azetidine-2-carboxylic acid (AZC) and protein cross-linker dithiobis(succinimidyl propionate) (DSP) were used to force misfolding of nascent polypeptides and existing cytosolic proteins, respectively. Both unfolding reagents display kinetic HSP induction profiles dissimilar to those generated by thiol-reactive compounds. Moreover, AZC treatment leads to significant cytotoxicity, which is not observed in the presence of the thiol-reactive compounds at the concentrations sufficient to induce Hsf1. Additionally, DSP treatment has little to no effect on Hsp90 functions. Together with the ultracentrifugation analysis of cell lysates that detected no insoluble protein aggregates, my data suggest that at concentrations sufficient to induce Hsf1, thiol-reactive compounds do not induce the HSR via a mechanism based on accumulation of unfolded cytosolic proteins. Another possibility is that thiol-reactive compounds may influence aspects of the protein quality control system such as the ubiquitin-proteasome system (UPS). To address this hypothesis, β-galactosidase reporter fusions were used as model substrates to demonstrate that thiol-reactive compounds do not inhibit ubiquitin activating enzymes (E1) or proteasome activity. Therefore, thiol-reactive compounds do not activate the HSR by inhibiting UPS-dependent protein degradation. I therefore hypothesized that these molecules may directly inactivate protein chaperones, known as repressors of Hsf1. To address this possibility, a thiol-reactive biotin probe was used to demonstrate in vitro that the yeast cytosolic Hsp70 Ssa1, which partners with Hsp90 to repress Hsf1, is specifically modified. Strikingly, mutation of conserved cysteine residues in Ssa1 renders cells insensitive to Hsf1 activation by cadmium and celastrol but not by heat shock. Conversely, substitution with the sulfinic acid and steric bulk mimic aspartic acid led to constitutive activation of Hsf1. Cysteine 303, located in the nucleotide-binding/ATPase domain of Ssa1, was shown to be modified in vivo by a model organic electrophile using Click chemistry technology, verifying that Ssa1 is a direct target for thiol-reactive compounds through adduct formation. Consistently, cadmium pretreatment promoted cells thermotolerance, which is abolished in cells carrying SSA1 cysteine mutant alleles. Taken together, these findings demonstrate that Hsp70 acts as a sensor to induce the cytoprotective heat shock response in response to environmental or endogenously produced thiol-reactive molecules and can discriminate between two distinct environmental stressors.