5 resultados para random number generator
em DigitalCommons@The Texas Medical Center
Resumo:
Radiotherapy has been a method of choice in cancer treatment for a number of years. Mathematical modeling is an important tool in studying the survival behavior of any cell as well as its radiosensitivity. One particular cell under investigation is the normal T-cell, the radiosensitivity of which may be indicative to the patient's tolerance to radiation doses.^ The model derived is a compound branching process with a random initial population of T-cells that is assumed to have compound distribution. T-cells in any generation are assumed to double or die at random lengths of time. This population is assumed to undergo a random number of generations within a period of time. The model is then used to obtain an estimate for the survival probability of T-cells for the data under investigation. This estimate is derived iteratively by applying the likelihood principle. Further assessment of the validity of the model is performed by simulating a number of subjects under this model.^ This study shows that there is a great deal of variation in T-cells survival from one individual to another. These variations can be observed under normal conditions as well as under radiotherapy. The findings are in agreement with a recent study and show that genetic diversity plays a role in determining the survival of T-cells. ^
Resumo:
The distribution of the number of heterozygous loci in two randomly chosen gametes or in a random diploid zygote provides information regarding the nonrandom association of alleles among different genetic loci. Two alternative statistics may be employed for detection of nonrandom association of genes of different loci when observations are made on these distributions: observed variance of the number of heterozygous loci (s2k) and a goodness-of-fit criterion (X2) to contrast the observed distribution with that expected under the hypothesis of random association of genes. It is shown, by simulation, that s2k is statistically more efficient than X2 to detect a given extent of nonrandom association. Asymptotic normality of s2k is justified, and X2 is shown to follow a chi-square (chi 2) distribution with partial loss of degrees of freedom arising because of estimation of parameters from the marginal gene frequency data. Whenever direct evaluations of linkage disequilibrium values are possible, tests based on maximum likelihood estimators of linkage disequilibria require a smaller sample size (number of zygotes or gametes) to detect a given level of nonrandom association in comparison with that required if such tests are conducted on the basis of s2k. Summarization of multilocus genotype (or haplotype) data, into the different number of heterozygous loci classes, thus, amounts to appreciable loss of information.
Resumo:
The use of group-randomized trials is particularly widespread in the evaluation of health care, educational, and screening strategies. Group-randomized trials represent a subset of a larger class of designs often labeled nested, hierarchical, or multilevel and are characterized by the randomization of intact social units or groups, rather than individuals. The application of random effects models to group-randomized trials requires the specification of fixed and random components of the model. The underlying assumption is usually that these random components are normally distributed. This research is intended to determine if the Type I error rate and power are affected when the assumption of normality for the random component representing the group effect is violated. ^ In this study, simulated data are used to examine the Type I error rate, power, bias and mean squared error of the estimates of the fixed effect and the observed intraclass correlation coefficient (ICC) when the random component representing the group effect possess distributions with non-normal characteristics, such as heavy tails or severe skewness. The simulated data are generated with various characteristics (e.g. number of schools per condition, number of students per school, and several within school ICCs) observed in most small, school-based, group-randomized trials. The analysis is carried out using SAS PROC MIXED, Version 6.12, with random effects specified in a random statement and restricted maximum likelihood (REML) estimation specified. The results from the non-normally distributed data are compared to the results obtained from the analysis of data with similar design characteristics but normally distributed random effects. ^ The results suggest that the violation of the normality assumption for the group component by a skewed or heavy-tailed distribution does not appear to influence the estimation of the fixed effect, Type I error, and power. Negative biases were detected when estimating the sample ICC and dramatically increased in magnitude as the true ICC increased. These biases were not as pronounced when the true ICC was within the range observed in most group-randomized trials (i.e. 0.00 to 0.05). The normally distributed group effect also resulted in bias ICC estimates when the true ICC was greater than 0.05. However, this may be a result of higher correlation within the data. ^
Resumo:
The respiratory central pattern generator is a collection of medullary neurons that generates the rhythm of respiration. The respiratory central pattern generator feeds phrenic motor neurons, which, in turn, drive the main muscle of respiration, the diaphragm. The purpose of this thesis is to understand the neural control of respiration through mathematical models of the respiratory central pattern generator and phrenic motor neurons. ^ We first designed and validated a Hodgkin-Huxley type model that mimics the behavior of phrenic motor neurons under a wide range of electrical and pharmacological perturbations. This model was constrained physiological data from the literature. Next, we designed and validated a model of the respiratory central pattern generator by connecting four Hodgkin-Huxley type models of medullary respiratory neurons in a mutually inhibitory network. This network was in turn driven by a simple model of an endogenously bursting neuron, which acted as the pacemaker for the respiratory central pattern generator. Finally, the respiratory central pattern generator and phrenic motor neuron models were connected and their interactions studied. ^ Our study of the models has provided a number of insights into the behavior of the respiratory central pattern generator and phrenic motor neurons. These include the suggestion of a role for the T-type and N-type calcium channels during single spikes and repetitive firing in phrenic motor neurons, as well as a better understanding of network properties underlying respiratory rhythm generation. We also utilized an existing model of lung mechanics to study the interactions between the respiratory central pattern generator and ventilation. ^
Resumo:
Random Forests™ is reported to be one of the most accurate classification algorithms in complex data analysis. It shows excellent performance even when most predictors are noisy and the number of variables is much larger than the number of observations. In this thesis Random Forests was applied to a large-scale lung cancer case-control study. A novel way of automatically selecting prognostic factors was proposed. Also, synthetic positive control was used to validate Random Forests method. Throughout this study we showed that Random Forests can deal with large number of weak input variables without overfitting. It can account for non-additive interactions between these input variables. Random Forests can also be used for variable selection without being adversely affected by collinearities. ^ Random Forests can deal with the large-scale data sets without rigorous data preprocessing. It has robust variable importance ranking measure. Proposed is a novel variable selection method in context of Random Forests that uses the data noise level as the cut-off value to determine the subset of the important predictors. This new approach enhanced the ability of the Random Forests algorithm to automatically identify important predictors for complex data. The cut-off value can also be adjusted based on the results of the synthetic positive control experiments. ^ When the data set had high variables to observations ratio, Random Forests complemented the established logistic regression. This study suggested that Random Forests is recommended for such high dimensionality data. One can use Random Forests to select the important variables and then use logistic regression or Random Forests itself to estimate the effect size of the predictors and to classify new observations. ^ We also found that the mean decrease of accuracy is a more reliable variable ranking measurement than mean decrease of Gini. ^