2 resultados para radius of curvature

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background. Orofacial clefts are among the most common birth defects and considered to be of complex etiology with both genetic and environmental factors.^ Objectives. The purpose of this study was to describe maternal and infant characteristics, examine the catchment area, and determine if there are any geospatial patterns among infants with an orofacial cleft delivered at two major hospitals in Harris County, The Woman's Hospital of Texas and Memorial Hermann Hospital-Texas Medical Center, from January 1, 2003 through December 31, 2007.^ Methods. Data were obtained from two major hospitals in Harris County and included all babies delivered in the period from 2003 through 2007 with an orofacial cleft. Residential addresses were mapped using MapInfo GIS software and the cluster analysis performed with SaTScan software.^ Results. Ninety-nine cases were identified spanning nine counties. 26% of cases resided within a 5-mile radius of the Texas Medical Center. Birth rates ranged from 1.4 to 16.5 per 10,000 total births. A cluster was identified in southwest Harris County, however, it was not significant (p=0.066).^ Conclusion. This study encourages further focus on linking cleft cases to environmental factors in order to determine potential risks. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional (3-D) model of the in situ flagellar motor without imposing rotational symmetry. Structural details of B. burgdorferi, including a layer of outer surface proteins, were clearly visible in the resulting 3-D reconstructions. By averaging the 3-D images of approximately 1,280 flagellar motors, a approximately 3.5-nm-resolution model of the stator and rotor structures was obtained. flgI transposon mutants lacked a torus-shaped structure attached to the flagellar rod, establishing the structural location of the spirochetal P ring. Treatment of intact organisms with the nonionic detergent NP-40 resulted in dissolution of the outermost portion of the motor structure and the C ring, providing insight into the in situ arrangement of the stator and rotor structures. Structural elements associated with the stator followed the curvature of the cytoplasmic membrane. The rotor and the C ring also exhibited angular flexion, resulting in a slight narrowing of both structures in the direction perpendicular to the cell axis. These results indicate an inherent flexibility in the rotor-stator interaction. The FliG switching and energizing component likely provides much of the flexibility needed to maintain the interaction between the curved stator and the relatively symmetrical rotor/C-ring assembly during flagellar rotation.