19 resultados para qualitative data analysis
em DigitalCommons@The Texas Medical Center
Resumo:
Next-generation DNA sequencing platforms can effectively detect the entire spectrum of genomic variation and is emerging to be a major tool for systematic exploration of the universe of variants and interactions in the entire genome. However, the data produced by next-generation sequencing technologies will suffer from three basic problems: sequence errors, assembly errors, and missing data. Current statistical methods for genetic analysis are well suited for detecting the association of common variants, but are less suitable to rare variants. This raises great challenge for sequence-based genetic studies of complex diseases.^ This research dissertation utilized genome continuum model as a general principle, and stochastic calculus and functional data analysis as tools for developing novel and powerful statistical methods for next generation of association studies of both qualitative and quantitative traits in the context of sequencing data, which finally lead to shifting the paradigm of association analysis from the current locus-by-locus analysis to collectively analyzing genome regions.^ In this project, the functional principal component (FPC) methods coupled with high-dimensional data reduction techniques will be used to develop novel and powerful methods for testing the associations of the entire spectrum of genetic variation within a segment of genome or a gene regardless of whether the variants are common or rare.^ The classical quantitative genetics suffer from high type I error rates and low power for rare variants. To overcome these limitations for resequencing data, this project used functional linear models with scalar response to develop statistics for identifying quantitative trait loci (QTLs) for both common and rare variants. To illustrate their applications, the functional linear models were applied to five quantitative traits in Framingham heart studies. ^ This project proposed a novel concept of gene-gene co-association in which a gene or a genomic region is taken as a unit of association analysis and used stochastic calculus to develop a unified framework for testing the association of multiple genes or genomic regions for both common and rare alleles. The proposed methods were applied to gene-gene co-association analysis of psoriasis in two independent GWAS datasets which led to discovery of networks significantly associated with psoriasis.^
Resumo:
Most statistical analysis, theory and practice, is concerned with static models; models with a proposed set of parameters whose values are fixed across observational units. Static models implicitly assume that the quantified relationships remain the same across the design space of the data. While this is reasonable under many circumstances this can be a dangerous assumption when dealing with sequentially ordered data. The mere passage of time always brings fresh considerations and the interrelationships among parameters, or subsets of parameters, may need to be continually revised. ^ When data are gathered sequentially dynamic interim monitoring may be useful as new subject-specific parameters are introduced with each new observational unit. Sequential imputation via dynamic hierarchical models is an efficient strategy for handling missing data and analyzing longitudinal studies. Dynamic conditional independence models offers a flexible framework that exploits the Bayesian updating scheme for capturing the evolution of both the population and individual effects over time. While static models often describe aggregate information well they often do not reflect conflicts in the information at the individual level. Dynamic models prove advantageous over static models in capturing both individual and aggregate trends. Computations for such models can be carried out via the Gibbs sampler. An application using a small sample repeated measures normally distributed growth curve data is presented. ^
Resumo:
Microarray technology is a high-throughput method for genotyping and gene expression profiling. Limited sensitivity and specificity are one of the essential problems for this technology. Most of existing methods of microarray data analysis have an apparent limitation for they merely deal with the numerical part of microarray data and have made little use of gene sequence information. Because it's the gene sequences that precisely define the physical objects being measured by a microarray, it is natural to make the gene sequences an essential part of the data analysis. This dissertation focused on the development of free energy models to integrate sequence information in microarray data analysis. The models were used to characterize the mechanism of hybridization on microarrays and enhance sensitivity and specificity of microarray measurements. ^ Cross-hybridization is a major obstacle factor for the sensitivity and specificity of microarray measurements. In this dissertation, we evaluated the scope of cross-hybridization problem on short-oligo microarrays. The results showed that cross hybridization on arrays is mostly caused by oligo fragments with a run of 10 to 16 nucleotides complementary to the probes. Furthermore, a free-energy based model was proposed to quantify the amount of cross-hybridization signal on each probe. This model treats cross-hybridization as an integral effect of the interactions between a probe and various off-target oligo fragments. Using public spike-in datasets, the model showed high accuracy in predicting the cross-hybridization signals on those probes whose intended targets are absent in the sample. ^ Several prospective models were proposed to improve Positional Dependent Nearest-Neighbor (PDNN) model for better quantification of gene expression and cross-hybridization. ^ The problem addressed in this dissertation is fundamental to the microarray technology. We expect that this study will help us to understand the detailed mechanism that determines sensitivity and specificity on the microarrays. Consequently, this research will have a wide impact on how microarrays are designed and how the data are interpreted. ^
Resumo:
Introduction. Food frequency questionnaires (FFQ) are used study the association between dietary intake and disease. An instructional video may potentially offer a low cost, practical method of dietary assessment training for participants thereby reducing recall bias in FFQs. There is little evidence in the literature of the effect of using instructional videos on FFQ-based intake. Objective. This analysis compared the reported energy and macronutrient intake of two groups that were randomized either to watch an instructional video before completing an FFQ or to view the same instructional video after completing the same FFQ. Methods. In the parent study, a diverse group of students, faculty and staff from Houston Community College were randomized to two groups, stratified by ethnicity, and completed an FFQ. The "video before" group watched an instructional video about completing the FFQ prior to answering the FFQ. The "video after" group watched the instructional video after completing the FFQ. The two groups were compared on mean daily energy (Kcal/day), fat (g/day), protein (g/day), carbohydrate (g/day) and fiber (g/day) intakes using descriptive statistics and one-way ANOVA. Demographic, height, and weight information was collected. Dietary intakes were adjusted for total energy intake before the comparative analysis. BMI and age were ruled out as potential confounders. Results. There were no significant differences between the two groups in mean daily dietary intakes of energy, total fat, protein, carbohydrates and fiber. However, a pattern of higher energy intake and lower fiber intake was reported in the group that viewed the instructional video before completing the FFQ compared to those who viewed the video after. Discussion. Analysis of the difference between reported intake of energy and macronutrients showed an overall pattern, albeit not statistically significant, of higher intake in the video before versus the video after group. Application of instructional videos for dietary assessment may require further research to address the validity of reported dietary intakes in those who are randomized to watch an instructional video before reporting diet compared to a control groups that does not view a video.^
Resumo:
Introduction. Despite the ban of lead-containing gasoline and paint, childhood lead poisoning remains a public health issue. Furthermore, a Medicaid-eligible child is 8 times more likely to have an elevated blood lead level (EBLL) than a non-Medicaid child, which is the primary reason for the early detection lead screening mandate for ages 12 and 24 months among the Medicaid population. Based on field observations, there was evidence that suggested a screening compliance issue. Objective. The purpose of this study was to analyze blood lead screening compliance in previously lead poisoned Medicaid children and test for an association between timely lead screening and timely childhood immunizations. The mean months between follow-up tests were also examined for a significant difference between the non-compliant and compliant lead screened children. Methods. Access to the surveillance data of all childhood lead poisoned cases in Bexar County was granted by the San Antonio Metropolitan Health District. A database was constructed and analyzed using descriptive statistics, logistic regression methods and non-parametric tests. Lead screening at 12 months of age was analyzed separately from lead screening at 24 months. The small portion of the population who were also related were included in one analysis and removed from a second analysis to check for significance. Gender, ethnicity, age of home, and having a sibling with an EBLL were ruled out as confounders for the association tests but ethnicity and age of home were adjusted in the nonparametric tests. Results. There was a strong significant association between lead screening compliance at 12 months and childhood immunization compliance, with or without including related children (p<0.00). However, there was no significant association between the two variables at the age of 24 months. Furthermore, there was no significant difference between the median of the mean months of follow-up blood tests among the non-compliant and compliant lead screened population for at the 12 month screening group but there was a significant difference at the 24 month screening group (p<0.01). Discussion. Descriptive statistics showed that 61% and 56% of the previously lead poisoned Medicaid population did not receive their 12 and 24 month mandated lead screening on time, respectively. This suggests that their elevated blood lead level may have been diagnosed earlier in their childhood. Furthermore, a child who is compliant with their lead screening at 12 months of age is 2.36 times more likely to also receive their childhood immunizations on time compared to a child who was not compliant with their 12 month screening. Even though there was no statistical significant association found for the 24 month group, the public health significance of a screening compliance issue is no less important. The Texas Medicaid program needs to enforce lead screening compliance because it is evident that there has been no monitoring system in place. Further recommendations include a need for an increased focus on parental education and the importance of taking their children for wellness exams on time.^
Resumo:
The need for timely population data for health planning and Indicators of need has Increased the demand for population estimates. The data required to produce estimates is difficult to obtain and the process is time consuming. Estimation methods that require less effort and fewer data are needed. The structure preserving estimator (SPREE) is a promising technique not previously used to estimate county population characteristics. This study first uses traditional regression estimation techniques to produce estimates of county population totals. Then the structure preserving estimator, using the results produced in the first phase as constraints, is evaluated.^ Regression methods are among the most frequently used demographic methods for estimating populations. These methods use symptomatic indicators to predict population change. This research evaluates three regression methods to determine which will produce the best estimates based on the 1970 to 1980 indicators of population change. Strategies for stratifying data to improve the ability of the methods to predict change were tested. Difference-correlation using PMSA strata produced the equation which fit the data the best. Regression diagnostics were used to evaluate the residuals.^ The second phase of this study is to evaluate use of the structure preserving estimator in making estimates of population characteristics. The SPREE estimation approach uses existing data (the association structure) to establish the relationship between the variable of interest and the associated variable(s) at the county level. Marginals at the state level (the allocation structure) supply the current relationship between the variables. The full allocation structure model uses current estimates of county population totals to limit the magnitude of county estimates. The limited full allocation structure model has no constraints on county size. The 1970 county census age - gender population provides the association structure, the allocation structure is the 1980 state age - gender distribution.^ The full allocation model produces good estimates of the 1980 county age - gender populations. An unanticipated finding of this research is that the limited full allocation model produces estimates of county population totals that are superior to those produced by the regression methods. The full allocation model is used to produce estimates of 1986 county population characteristics. ^
Resumo:
Approximately 795,000 new and recurrent strokes occur each year. Because of the resulting functional impairment, stroke survivors are often discharged into the care of a family caregiver, most often their spouse. This dissertation explored the effect that mutuality, a measure of the perceived positive aspects of the caregiving relationship, had on the stress and depression of 159 stroke survivors and their spousal caregivers over the first 12 months post discharge from inpatient rehabilitation. Specifically, cross-lagged regression was utilized to investigate the dyadic, longitudinal relationship between caregiver and stroke survivor mutuality and caregiver and stroke survivor stress over time. Longitudinal meditational analysis was employed to examine the mediating effect of mutuality on the dyads’ perception of family function and caregiver and stroke survivor depression over time.^ Caregivers’ mutuality was found to be associated with their own stress over time but not the stress of the stroke survivor. Caregivers who had higher mutuality scores over the 12 months of the study had lower perceived stress. Additionally, a partner effect of stress for the stroke survivor but not the caregiver was found, indicating that stroke survivors’ stress over time was associated with caregivers’ stress but caregivers’ stress over time was not significantly associated with the stress of the stroke survivor.^ This dissertation did not find mutuality to mediate the relationship between caregivers’ and stroke survivors’ perception of family function at baseline and their own or their partners’ depression at 12 months as hypothesized. However, caregivers who perceived healthier family functioning at baseline and stroke survivors who had higher perceived mutuality at 12 months had lower depression at one year post discharge from inpatient rehabilitation. Additionally, caregiver mutuality at 6 months, but not at baseline or 12 months, was found to be inversely related to caregiver depression at 12 months.^ These findings highlight the interpersonal nature of stress in the context of caregiving, especially among spousal relationships. Thus, health professionals should encourage caregivers and stroke survivors to focus on the positive aspects of the caregiving relationship in order to mitigate stress and depression. ^
Resumo:
Individuals with disabilities face numerous barriers to participation due to biological and physical characteristics of the disability as well as social and environmental factors. Participation can be impacted on all levels from societal, to activities of daily living, exercise, education, and interpersonal relationships. This study evaluated the impact of pain, mood, depression, quality of life and fatigue on participation for individuals with mobility impairments. This cross sectional study derives from self-report data collected from a wheelchair using sample. Bivariate correlational and multivariate analysis were employed to examine the relationship between pain, quality of life, positive and negative mood, fatigue, and depression with participation while controlling for relevant socio-demographic variables (sex, age, time with disability, race, and education). Results from the 122 respondents with mobility impairments demonstrated that after controlling for socio-demographic characteristics in the full model, 20% of the variance in participation scores were accounted for by pain, quality of life, positive and negative mood, and depression. Notably, quality of life emerged as being the single variable that was significantly related to participation in the full model. Contrary to other studies, pain did not appear to significantly impact participation outcomes for wheelchair users in this sample. Participation is an emerging area of interest among rehabilitation and disability researchers, and results of this study provide compelling evidence that several psychosocial factors are related to participation. This area of inquiry warrants further study, as many of the psychosocial variables identified in this study (mood, depression, quality of life) may be amenable to intervention, which may also positively influence participation.^
Resumo:
Autoimmune diseases are a group of inflammatory conditions in which the body's immune system attacks its own cells. There are over 80 diseases classified as autoimmune disorders, affecting up to 23.5 million Americans. Obesity affects 32.3% of the US adult population, and could also be considered an inflammatory condition, as indicated by the presence of chronic low-grade inflammation. C-reactive protein (CRP) is a marker of inflammation, and is associated with both adiposity and autoimmune inflammation. This study sought to determine the cross-sectional association between obesity and autoimmune diseases in a large, nationally representative population derived from NHANES 2009–10 data, and the role CRP might play in this relationship. Overall, the results determined that individuals with autoimmune disease were 2.11 times more likely to report being overweight than individuals without autoimmune disease and that CRP had a mediating affect on the obesity-autoimmune relationship. ^
Resumo:
Next-generation sequencing (NGS) technology has become a prominent tool in biological and biomedical research. However, NGS data analysis, such as de novo assembly, mapping and variants detection is far from maturity, and the high sequencing error-rate is one of the major problems. . To minimize the impact of sequencing errors, we developed a highly robust and efficient method, MTM, to correct the errors in NGS reads. We demonstrated the effectiveness of MTM on both single-cell data with highly non-uniform coverage and normal data with uniformly high coverage, reflecting that MTM’s performance does not rely on the coverage of the sequencing reads. MTM was also compared with Hammer and Quake, the best methods for correcting non-uniform and uniform data respectively. For non-uniform data, MTM outperformed both Hammer and Quake. For uniform data, MTM showed better performance than Quake and comparable results to Hammer. By making better error correction with MTM, the quality of downstream analysis, such as mapping and SNP detection, was improved. SNP calling is a major application of NGS technologies. However, the existence of sequencing errors complicates this process, especially for the low coverage (
Resumo:
In this dissertation, we propose a continuous-time Markov chain model to examine the longitudinal data that have three categories in the outcome variable. The advantage of this model is that it permits a different number of measurements for each subject and the duration between two consecutive time points of measurements can be irregular. Using the maximum likelihood principle, we can estimate the transition probability between two time points. By using the information provided by the independent variables, this model can also estimate the transition probability for each subject. The Monte Carlo simulation method will be used to investigate the goodness of model fitting compared with that obtained from other models. A public health example will be used to demonstrate the application of this method. ^
Resumo:
Purpose. Understanding siblings' experiences after a major childhood burn injury was the purpose of this mixed method, qualitative dominant study. The following research questions guided this project: How do siblings describe the impact of a major childhood burn injury experience? How do sibling relationship factors of warmth/closeness, relative status/power, conflict, and rivalry further clarify their relationship and their experience after a major burn injury? ^ Methods. A mixed method, qualitative dominant, design was implemented to understand the sibling experiences in a family with a child suffering from a major burn injury. Informants were selected from patients with childhood burn injuries attending the reconstructive clinic at a Gulf coast children's specialty hospital. The qualitative portion used the life story method, a narrative process, to portray the long-term impact on sibling relationships. A "case" represents a family unit and could be composed of one or multiple family members. Participants from 22 cases (N = 40 participants) were interviewed. Interviews were conducted in person and via telephone. The quantitative portion, or the embedded part of this mixed method design, used the Sibling Relationship Questionnaire Revised (SRQ-R) to conduct an additional structured interview and acquire scoring data. It was postulated that the SRQ-R would provide another perspective on the sibling experience and expand the qualitative data analysis. Thematic analysis was implemented on the qualitative interview data including the qualitative data from the interviews structured on the SRQ-R. Additionally, scores on the SRQ-R were tabulated to further describe the cases. ^ Results. The overall thematic pattern for the sibling relationship in families having a child with a major burn injury was that of normalization. Areas of normalization as well as the process of adjustment were the major themes. Areas of normalization were found in play and other activities, in school and work, and in family relations with their siblings and their parents. The process of adjustment in the sibling relationship was described as varied, involved school and work re-entry, and might even change their life perspective. Further analysis included an examination of the cases in which more than one person were interviewed and completed the SRQ-R. Participants from five ( n = 11) of six cases (n = 14), scored above 3.0 on the five-point scale on the Warmth/Closeness construct, indicating they perceived the sibling relationship as close. Five participants scored high on the Conflict construct and four participants scored high on the Rivalry construct. Finally, Relative Status/Power was low or negative in the six cases (n = 13). ^ Conclusions/implications. These findings suggest the importance of returning to normalcy for many of the families and the significance of sibling relationships on the process. Some of these families were able to use this major life event in a positive way to promote normalization. ^
Resumo:
Background. Acute diarrhea (AD) is an important cause of morbidity and mortality among both children and adults. An ideal antidiarrheal treatment should be safe, effective, compatible with Oral Rehydration Solution, and inexpensive. Herbal medicines, if effective, should fit these criteria as well or better than standard treatment. ^ Objective. The objective of the present study was to assess the effectiveness of plant preparations in patients with AD in reports of randomized and non-randomized controlled trials. ^ Aims. The aims of the present study were to identify effective antidiarrheal herbs and to identify potential antidiarrheal herbs for future studies of efficacy through well designed clinical trials in human populations. ^ Methods. Nineteen published studies of herbal management of AD were examined to identify effective plant preparations. Ten plant preparations including Berberine (Berberis aristata), tormentil root ( Potentialla tormentilla), baohauhau (from the baobaosan plant), carob (Ceratonia siliqua), pectin (Malus domestica), wood creosote (Creosote bush), guava (Psidium guajava L.), belladonna (Atropa belladonna), white bean (Phaseolis vulgaris), and wheat (Triticum aestivum) were identified. ^ Results. Qualitative data analysis of nineteen clinical trials indicated berberine’s potentially valuable antisecretory effects against diarrhea caused by Vibrio cholerae and enterotoxigenic Escherichia coli. Tormentil root showed significant efficacy against rotavirus-induced diarrhea; carob exhibited antidiarrheal properties not only by acting to detoxify and constipate but by providing a rich source of calories; guava and belladonna are antispasmodics and have been shown to relieve the symptoms of AD. Finally, white bean and wheat yielded favorable clinical and dietary outcomes in children with diarrhea. ^ Conclusion. The present study is the first to review the evidence for use of herbal compounds for treatment of AD. Future randomized controlled trials are needed to evaluate their efficacy and safety.^
Resumo:
This is an ethnographic study about the worldview of community-based initiatives in Houston, Texas, and the people who work in them. People who participated in this study recognize that their direct constructive action is at the heart of authentic social change in their minority communities. Through qualitative data analysis, a constellation of relationships and process patterns were found to constitute themselves into the system of the community-based initiative. The predominant patterns identified from the findings in this study are: the pervasiveness of place, the importance of people, unique initiatory patterns, the concrete local sustainability, the ever-present action orientation, the resourceful use of networks and inter-relationships, the significance of church influence, the core sense of spirituality and the essence of hope. These patterns emerged out of the local knowledge, which is acutely sensitive to the elements of history and lived experience, embedded in the distinctive moral and visionary patterns of meaning and expression. Findings from the research reveal that these community-based initiatives are not programs--they are people--people who keep hope alive in their communities and who, by their daily practice, liberate others. ^
Resumo:
The purpose of this study was to understand the scope of breast cancer disparities within the Texas Medical Center. The goal was to increase the awareness of breast cancer disparities at the health care organization level, and to foster the development of organizational interventions to reduce breast cancer disparities. The study seeks to answer the following questions: 1. Are hospitals in the Texas Medical Center implementing interventions to reduce breast cancer disparities? 2. What are their interventions for reducing the effects of non clinical factors on breast cancer treatment disparities? 3. What are their measures for monitoring, continuously improving, and evaluating the success of their interventions? ^ This research project was designed as a mixed methods case study. Quantitative breast cancer data for the years 2000-2009 was obtained from the Texas Cancer Registry (TCR). Qualitative data collection and analysis was done by conducting a total of 20 semi-structured interviews of administrators, physicians and nurses at five hospitals (A, B, C, D and E) in the Texas Medical Center (TMC). For quantitative analysis, the study was limited to early stage breast cancer patients: local and regional. The dependent variable was receipt of standard treatment: Surgery (Yes/No), BCS vs Mastectomy, Chemotherapy (Yes/No) and Radiation after BCS (Yes/No). The main independent variable was race: non-Hispanic White (NHW) , non-Hispanic Black (NHB), and Hispanic. Other covariates included age at diagnosis, diagnosis date, percent poverty, grade, stage, and regional nodes. Multivariate logistic regression was used to test the adjusted association between receipt of standard care and race. Qualitative data was analyzed with the Atlas.ti7 software (ATLAS.ti GmbH, Berlin). ^ Though there were significant differences by race for all dependent variables when the data was analyzed as a single group of all hospitals; at the level of the individual hospitals the results were not consistent by race/ethnicity across all dependent variables for hospitals A, B, and E. There were no racial differences in adjusted analysis for receipt of chemotherapy for the individual hospitals of interest in this study. For hospitals C and D, no racial disparities in treatment was observed in adjusted multivariable analysis. All organizations in this study were aware of the body of research which shows that there are disparities in breast cancer outcomes for patient population groups. However, qualitative data analysis found that there were differences in interest among hospitals in addressing breast cancer disparities in their patient population groups. Some organizations were actively implementing directed measures to reduce the breast cancer disparity gap in outcomes for patients, and others were not. Despite the differences in levels of interest, quantitative data analysis showed that organizations in the Texas Medical Center were making progress in reducing the burden of breast cancer disparities in the patient populations being served.^