29 resultados para protein p53 inducible protein phosphatase gene

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The urokinase-type plasminogen activator receptor (u-PAR) promotes extracellular matrix degradation, invasion and metastasis. A first objective of this dissertation was to identify cis-elements and trans-acting factors activating u-PAR gene expression through a previously footprinted (–148/–124) promoter region. Mobility shifting experiments on nuclear extracts of a high u-PAR-expressing colon cancer cell line (RKO) indicated Sp1, Sp3 and a factor similar to, but distinct from, AP-2α bound to an oligonucleotide spanning –152/–135. Mutations preventing the binding of the AP-2α-related factor reduced u-PAR promoter activity. In RKO, the expression of a dominant negative AP-2 (AP-2αB) diminished u-PAR promoter activity, protein and u-PAR mediated laminin degradation. Conversely, u-PAR promoter activity in low u-PAR-expressing GEO cells was increased by AP-2αA expression. PMA treatment, which induces u-PAR expression, caused an increased amount of the AP-2α-related factor-containing complex in GEO, and mutations preventing AP-2α-like and Sp1/Sp3 binding reduced the u-PAR promoter stimulation by PMA. In resected colon cancers, u-PAR protein amounts were related to the amount of the AP-2α-related factor-containing complex. In conclusion, constitutive and PMA- inducible u-PAR gene expression and -proteolysis are mediated partly through transactivation via a promoter sequence (–152/435) bound with an AP-2α-related factor and Sp1/Sp3. ^ A second interest of this dissertation was to determine if a constitutively active Src regulates the transcription of the u-PAR gene, since c-src expression increases invasion in colon cancer. Increased u-PAR protein and laminin degradation paralleling elevated Src activity was evident in SW480 colon cancer cells stably expressing a constitutively active Src (Y- c-src527F). Nuclear run-on experiments indicated that this was due largely to transcriptional activation. While transient transfection of SW480 cells with Y-c-src527F induced a u-PAR-CAT-reporter, mutations preventing Sp1-binding to promoter region –152/435 abolished this induction. Mobility shift assays revealed increased Sp1 binding to region –152/135 with nuclear extracts of Src-transfected SW480 cells. Finally, the amounts of endogenous u-PAR in resected colon cancers significantly correlated with Src-activity. These data suggest that u-PAR gene expression and proteolysis are regulated by Src, this requiring the promoter region (–152/–135) bound with Sp1, thus, demonstrating for the first time that transcription factor Sp1 is a downstream effector of Src. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this thesis lies in the development of a sensitive method for the analysis of protein primary structure which can be easily used to confirm the DNA sequence of a protein's gene and determine the modifications which are made after translation. This technique involves the use of dipeptidyl aminopeptidase (DAP) and dipeptidyl carboxypeptidase (DCP) to hydrolyze the protein and the mass spectrometric analysis of the dipeptide products.^ Dipeptidyl carboxypeptidase was purified from human lung tissue and characterized with respect to its proteolytic activity. The results showed that the enzyme has a relatively unrestricted specificity, making it useful for the analysis of the C-terminal of proteins. Most of the dipeptide products were identified using gas chromatography/mass spectrometry (GC/MS). In order to analyze the peptides not hydrolyzed by DCP and DAP, as well as the dipeptides not identified by GC/MS, a FAB ion source was installed on a quadrupole mass spectrometer and its performance evaluated with a variety of compounds.^ Using these techniques, the sequences of the N-terminal and C-terminal regions and seven fragments of bacteriophage P22 tail protein have been verified. All of the dipeptides identified in these analysis were in the same DNA reading frame, thus ruling out the possibility of a single base being inserted or deleted from the DNA sequence. The verification of small sequences throughout the protein sequence also indicates that no large portions of the protein have been removed after translation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a result of defects in the coordination of cell proliferation and programmed cell death. The extent of cell death is physiologically controlled by the activation of a programmed suicide pathway that results in a morphologically recognizable form of death termed apoptosis. Inducing apoptosis in tumor cells by gene therapy provides a potentially effective means to treat human cancers. The p84N5 is a novel nuclear death domain containing protein that has been shown to bind an amino terminal domain of retinoblastoma tumor suppressor gene product (pRb). Expression of N5 can induce apoptosis that is dependent upon its intact death domain and is inhibited by pRb. In many human cancer cells the functions of pRb are either lost through gene mutation or inactivated by different mechanisms. N5 based gene therapy may induce cell death preferentially in tumor cells relative to normal cells. We have demonstrated that N5 gene therapy is less toxic to normal cells than to tumor cells. To test the possibility that N5 could be used in gene therapy of cancer, we have generated a recombinant adenovirus engineered to express N5 and test the effects of viral infection on growth and tumorigenicity of human cancer cells. Adenovirus N5 infection significantly reduced the proliferation and tumorigenicity of breast, ovarian, and osteosarcoma tumor cell lines. Reduced proliferation and tumorigenicity were mediated by an induction of apoptosis as indicated by DNA fragmentation in infected cells. We also test the potential utility of N5 for gene therapy of pancreatic carcinoma that typically respond poorly to conventional treatment. Adenoviral mediated N5 gene transfer inhibits the growth of pancreatic cancer cell lines in vitro. N5 gene transfer also reduces the growth and metastasis of human pancreatic adenocarcinoma in subcutaneous and orthotopic mouse model. Interestingly, the pancreatic adenocarcinoma cells are more sensitive to N5 than they are to p53, suggesting that N5 gene therapy may be effective in tumors resistant to p53. We also test the possibilities of the use of N5 and p53 together on the inhibition of pancreatic cancer cell growth in vitro and vivo. Simultaneous use of N5 and RbΔCDK has been found to exert a greater extent on the inhibition of pancreatic cancer cell growth in vitro and in vivo. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colorectal cancer is a leading cause of cancer mortality and early detection can significantly improve the clinical outcome. Most colorectal cancers arise from benign neoplastic lesions recognized as adenomas. Only a small percentage of all adenomas will become malignant. Thus, there is a need to identify specific markers of malignant potential. Studies at the molecular level have demonstrated an accumulation of genetic alterations, some hereditary but for the most occurring in somatic cells. The most common are the activation of ras, an oncogene involved in signal transduction, and the inactivation of p53, a tumor suppressor gene implicated in cell cycle regulation. In this study, 38 carcinomas, 95 adenomas and 20 benign polyps were analyzed by immunohistochemistry for the abnormal expression of p53 and ras proteins. An index of cellular proliferation was also measured by labeling with PCNA. A general overexpression of p53 was immunodetected in 66% of the carcinomas, while 26% of adenomas displayed scattered individual positive cells or a focal high concentration of positive cells. This later was more associated with severe dysplasia. Ras protein was detected in 37% of carcinomas and 32% of adenomas mostly throughout the tissue. p53 immunodetection was more frequent in adenomas originating in colons with synchronous carcinomas, particularly in patients with familial adenomatous polyposis and it may be a useful marker in these cases. Difference in the frequency of p53 and ras alterationbs was related to the location of the neoplasm. Immunodetection of p53 protein was correlated to the presence of a mutation in p53 gene at exon 7 and 5 in 4/6 carcinomas studied and 2 villous adenomas. Thus, we characterized in adenomas the abnormal expression of two proteins encoded by the most commonly altered genes in colorectal cancer. p53 alteration appears to be more specifically associated with transition to malignancy than ras. By using immunohistochemistry, a technique that keeps the architecture of the tissue intact, it was possible to correlate these alterations to histopathological characteristics that were associated with higher risks for transformation: villous content, dysplasia and size of adenoma. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations into the molecular basis of glioblastoma multiforme led to the identification of a putative tumor suppressor gene, MMAC/ PTEN. Initial studies implicated MMAC/PTEN in many different tumor types, and identified a protein phosphatase motif in its sequence. This project aimed to identify the biological and biochemical functions of MMAC/PTEN by transiently expressing the gene in cancer cells that lack a functional gene product. ^ Expression of MMAC/PTEN mildly suppressed the growth of U251 human glioma cells and abrogated the growth advantage mediated by overexpression of the epidermal growth factor receptor (EGFR). Immunoblotting demonstrated that MMAC/PTEN expression did not affect the phosphorylation of the EGFR itself, or the intermediates of several downstream signaling pathways. However, MMAC/PTEN expression significantly reduced the phosphorylation and catalytic activity of the proto-oncogene Akt/PKB. While Akt/PKB regulates the survival of many cell types, expression of MMAC/PTEN did not induce apoptosis in adherent U251 cells. Instead, MMAC/PTEN expression sensitized the cells to apoptosis when maintained in suspension (anoikis). As the survival of suspended cells is one of the hallmarks leading to metastasis, MMAC/PTEN expression was examined in a system in which metastasis is more clinically relevant, prostate cancer. ^ Expression of MMAC/PTEN in both LNCaP and PC3-P human prostate cancer cells specifically inhibited Akt/PKB phosphorylation. MMAC/PTEN expression in LNCaP cells resulted in a profound inhibition of growth that was significantly greater than that achieved with expression of p53. Expression of MMAC/PTEN in PC3-P cells resulted in greater growth inhibition than was observed in U251 glioma cells, but less than was observed in LNCaP cells, or upon p53 expression. To determine if MMAC/PTEN could function as a tumor suppressor in vivo, the effects of MMAC/PTEN expression on PC3-P cells implanted orthotopically in nude mice were examined. The ex-vivo expression of MMAC/PTEN did not decrease tumor incidence, but it did significantly decrease tumor size and metastasis. In-vivo expression of MMAC/PTEN in pre-established PC3-P tumors did not significantly inhibit tumor incidence or size, but did inhibit metastasis formation. ^ These studies demonstrate that MMAC/PTEN is a novel and important tumor suppressor gene, which functions to downregulate an important cell survival signaling pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence for an RNA gain-of-function toxicity has now been provided for an increasing number of human pathologies. Myotonic dystrophies (DM) belong to a class of RNA-dominant diseases that result from RNA repeat expansion toxicity. Specifically, DM of type 1 (DM1), is caused by an expansion of CUG repeats in the 3'UTR of the DMPK protein kinase mRNA, while DM of type 2 (DM2) is linked to an expansion of CCUG repeats in an intron of the ZNF9 transcript (ZNF9 encodes a zinc finger protein). In both pathologies the mutant RNA forms nuclear foci. The mechanisms that underlie the RNA pathogenicity seem to be rather complex and not yet completely understood. Here, we describe Drosophila models that might help unravelling the molecular mechanisms of DM1-associated CUG expansion toxicity. We generated transgenic flies that express inducible repeats of different type (CUG or CAG) and length (16, 240, 480 repeats) and then analyzed transgene localization, RNA expression and toxicity as assessed by induced lethality and eye neurodegeneration. The only line that expressed a toxic RNA has a (CTG)(240) insertion. Moreover our analysis shows that its level of expression cannot account for its toxicity. In this line, (CTG)(240.4), the expansion inserted in the first intron of CG9650, a zinc finger protein encoding gene. Interestingly, CG9650 and (CUG)(240.4) expansion RNAs were found in the same nuclear foci. In conclusion, we suggest that the insertion context is the primary determinant for expansion toxicity in Drosophila models. This finding should contribute to the still open debate on the role of the expansions per se in Drosophila and in human pathogenesis of RNA-dominant diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gap junctions between neurons form the structural substrate for electrical synapses. Connexin 36 (Cx36, and its non-mammalian ortholog connexin 35) is the major neuronal gap junction protein in the central nervous system (CNS), and contributes to several important neuronal functions including neuronal synchronization, signal averaging, network oscillations, and motor learning. Connexin 36 is strongly expressed in the retina, where it is an obligatory component of the high-sensitivity rod photoreceptor pathway. A fundamental requirement of the retina is to adapt to broadly varying inputs in order to maintain a dynamic range of signaling output. Modulation of the strength of electrical coupling between networks of retinal neurons, including the Cx36-coupled AII amacrine cell in the primary rod circuit, is a hallmark of retinal luminance adaptation. However, very little is known about the mechanisms regulating dynamic modulation of Cx36-mediated coupling. The primary goal of this work was to understand how cellular signaling mechanisms regulate coupling through Cx36 gap junctions. We began by developing and characterizing phospho-specific antibodies against key regulatory phosphorylation sites on Cx36. Using these tools we showed that phosphorylation of Cx35 in fish models varies with light adaptation state, and is modulated by acute changes in background illumination. We next turned our focus to the well-studied and readily identifiable AII amacrine cell in mammalian retina. Using this model we showed that increased phosphorylation of Cx36 is directly related to increased coupling through these gap junctions, and that the dopamine-stimulated uncoupling of the AII network is mediated by dephosphorylation of Cx36 via protein kinase A-stimulated protein phosphatase 2A activity. We then showed that increased phosphorylation of Cx36 on the AII amacrine network is driven by depolarization of presynaptic ON-type bipolar cells as well as background light increments. This increase in phosphorylation is mediated by activation of extrasynaptic NMDA receptors associated with Cx36 gap junctions on AII amacrine cells and by Ca2+-calmodulin-dependent protein kinase II activation. Finally, these studies indicated that coupling is regulated locally at individual gap junction plaques. This work provides a framework for future study of regulation of Cx36-mediated coupling, in which increased phosphorylation of Cx36 indicates increased neuronal coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glomerular mesangial cells (MC) are renal vascular cells that regulate the surface area of glomerular capillaries and thus, partly control glomerular filtration rate. Clarification of the signal transduction pathways and ionic mechanisms modulating MC tone are critical to understanding the physiology and pathophysiology of these cells, and the integrative role these cells play in fluid and electrolyte homeostasis. The patch clamp technique and an assay of cell concentration were used to electrophysiologically and pharmacologically analyze the ion channels of the plasmalemmal of human glomerular MC maintained in tissue culture. Moreover, the signal transduction pathways modulating channels involved in relaxation were investigated. Three distinct K$\sp+$-selective channels were identified: two low conductance channels (9 and 65pS) maintained MC at rest, while a larger conductance (206pS) K$\sp+$ channel was quiescent at rest. This latter channel was pharmacologically and biophysically similar to the large, Ca$\sp{2+}$-activated K$\sp+$ channel (BK$\rm\sb{Ca}$) identified in smooth muscle. BK$\rm\sb{Ca}$ played an essential role in relaxation of MC. In cell-attached patches, the open probability (P$\rm\sb{o}$) of BK$\rm\sb{Ca}$ increased from a basal level of $<$0.05 to 0.22 in response to AII (100nM)-induced mobilization of cytosolic Ca$\sp{2+}$. Activation in response to contractile signals (membrane depolarization and Ca$\sp{2+}$ mobilization) suggests that BK$\rm\sb{Ca}$ acts as a low gain feedback regulator of contraction. Atrial natriuretic factor (ANF; 1.0$\mu$M) and nitroprusside (NP; 0.1mM), via the second messenger, cGMP, increase the feedback gain of BK$\rm\sb{Ca}$. In cell-attached patches bathed with physiological saline, these agents transiently activated BK$\rm\sb{Ca}$ from a basal $\rm P\sb{o}<0.05$ to peak responses near 0.50. As membrane potential hyperpolarizes towards $\rm E\sb{K}$ (2-3 minutes), BK$\rm\sb{Ca}$ inactivates. Upon depolarizing V$\rm\sb{m}$ with 140 mM KCl, db-cGMP (10$\mu$M) activated BK$\rm\sb{Ca}$ to a sustained P$\rm\sb{o}$ = 0.51. Addition of AII in the presence of cGMP further increased P$\rm\sb{o}$ to 0.82. Activation of BK$\rm\sb{Ca}$ by cGMP occured via an endogenous cGMP-dependent protein kinase (PKG): in excised, inside-out patches, PKG in the presence of Mg-ATP (0.1mM) and cGMP increased P$\rm\sb{o}$ from 0.07 to 0.39. In contrast, neither PKC nor PKA influenced BK$\rm\sb{Ca}$. Endogenous okadaic acid-sensitive protein phosphatase suppressed BK$\rm\sb{Ca}$ activity. Binning the change in P$\rm\sb{o}\ (\Delta P\sb{o}$) of BK$\rm\sb{Ca}$ in response to PKG (n = 69) established two distinct populations of channels: one that responded ($\cong$67%, $\rm\Delta P\sb{o} = 0.45 \pm 0.03$) and one that was unresponsive ($\Delta\rm P\sb{o} = 0.00 \pm 0.01$) to PKG. Activation of BK$\rm\sb{Ca}$ by PKG resulted from a decrease in the Ca$\sp{2+}$- and voltage-activation thresholds independent of sensitivities. In conclusion, mesangial BK$\rm\sb{Ca}$ channels sense both electrical and chemical signals of contraction and act as feedback regulators by repolarizing the plasma membrane. ANF and NO, via cGMP, stimulate endogenous PKG, which subsequently decreases the activation threshold of BK$\rm\sb{Ca}$ to increase the gain of this feedback regulatory signal. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional gastrointestinal disorders (FGIDs) are defined as ailments of the mid or lower gastrointestinal tract which are not attributable to any discernable anatomic or biochemical defects.1 FGIDs include functional bowel disorders, also known as persisting abdominal symptoms (PAS). Irritable bowel syndrome (IBS) is one of the most common illnesses classified under PAS.2,3 This is the first prospective study that looks at the etiology and pathogenesis of post-infectious PAS in the context of environmental exposure and genetic susceptibility in a cohort of US travelers to Mexico. Our objective was to identify infectious, genetic and environmental factors that predispose to post infectious PAS. ^ Methods. This is a secondary data analysis of a prospective study on a cohort of 704 healthy North American tourists to Cuernavaca, Morelos and Guadalajara, Jalisco in Mexico. The subjects at risk for Travelers' diarrhea were assessed for chronic abdominal symptoms on enrollment and six months after the return to the US. ^ Outcomes. PAS was defined as disturbances of mid and lower gastrointestinal system without any known pathological or radiological abnormalities, or infectious, or metabolic causes. It refers to functional bowel disease, category C of functional gastrointestinal diseases as defined by the Rome II criterion. PAS was sub classified into Irritable bowel syndrome (IBS) and functional abdominal disease (FAD). ^ IBS is defined as recurrent abdominal pain or discomfort present at least 25% and associated with improvement with defecation, change in frequency and form of stool. FAD encompasses other abdominal symptoms of chronic nature that do not meet the criteria for IBS. It includes functional diarrhea, functional constipation, functional bloating: and unspecified bowel symptoms. ^ Results. Among the 704 travelers studied, there were 202 cases of PAS. The PAS cases included 175 cases of FAD and 27 cases of IBS. PAS was more frequent among subjects who developed traveler's diarrhea in Mexico compared to travelers who remained healthy during the short term visit to Mexico (52 vs. 38; OR = 1.8; CI, 1.3–2.5, P < 0.001). A statistically significant difference was noted in the mean age of subjects with PAS compared to healthy controls (28 vs. 34 yrs; OR = 0.97, CI, 0.95–0.98; P < 0.001). Travelers who experienced multiple episodes, a later onset of diarrhea in Mexico and passed greater numbers of unformed stools were more likely to be identified in PAS group at six months. Participants who developed TD caused by enterotoxigenic E.coli in Mexico showed a 2.6 times higher risk of developing FAD (P = 0.003). Infection with Providencia ssp. also demonstrated a greater risk to developing PAS. Subjects who sought treatment for diarrhea while in Mexico also displayed a significantly lower frequency of IBS at six months follow up (OR = 0.30; CI, 0.10–0.80; P = 0.02). ^ Forty six SNPs belonging to 14 genes were studied. Seven SNPs were associated with PAS at 6 months. These included four SNPs from the Caspase Recruitment Domain-Containing Protein 15 gene (CARD15), two SNPs from Surfactant Pulmonary-Associated Protein D gene (SFTPD) and one from Decay-Accelerating Factor For Complement gene (CD55). A genetic risk score (GRS) was composed based on the 7 SNPs that showed significant association with PAS. A 20% greater risk for PAS was noted for every unit increase in GRS. The risk increased by 30% for IBS. The mean GRS was high for IBS (2.2) and PAS (1.1) compared to healthy controls (0.51). These data suggests a role for these genetic polymorphisms in defining the susceptibility to PAS. ^ Conclusions. The study allows us to identify individuals at risk for developing post infectious IBS (PI-IBS) and persisting abdominal symptoms after an episode of TD. The observations in this study will be of use in developing measures to prevent and treat post-infectious irritable bowel syndrome among travelers including pre-travel counseling, the use of vaccines, antibiotic prophylaxis or the initiation of early antimicrobial therapy. This study also provides insights into the pathogenesis of post infectious PAS and IBS. (Abstract shortened by UMI.)^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulation of uterine quiescence involves the integration of the signaling pathways regulating uterine contraction and relaxation. Uterine contractants increase intracellular calcium through receptor/GαqPLC coupling, resulting in contraction of the myometrium. Elevation of cAMP concentration has been correlated with relaxation of the myometrium. However, the mechanism of cAMP action in the uterus is unclear. ^ Both endogenous and exogenous increases in cAMP inhibited oxytocin-stimulated phosphatidylinositide turnover in an immortalized pregnant human myometrial cell line (PHM1-41). This inhibition was reversed by cAMP-dependent protein kinase (PKA) inhibitors, suggesting the involvement of PKA. cAMP inhibited phosphatidyinositide turnover stimulated by different agonists in different cell lines. These data suggest that the cAMP inhibitory mechanism is neither cell nor receptor dependent, and inhibits Gαq/PLCβ1 and PLCβ3 coupling. ^ The subcellular localization of PKA occurs via PKA binding to A-Kinase-Anchoring-Proteins (AKAP), and peptides that inhibit this association have been developed (S-Ht31). S-Ht31 blocked cAMP-stimulated PKA activity and decreased PKA concentration in PHM1-41 cell plasma membranes. S-Ht31 reversed the ability of CPT-cAMP, forskolin and relaxin to inhibit phosphatidylinositide turnover in PHM1-41 cells. Overlay analysis of both PHM1-41 cell and nonpregnant rat myometrium found an AKAPs of 86 kDa and 150 kDa associated with the plasma membrane, respectively. These data suggest that PKA anchored to the plasma membrane via AKAP150/PKA anchoring is involved in the cAMP inhibitory mechanism. ^ CPT-cAMP and isoproterenol inhibited phosphatidylinositide turnover in rat myometrium from days 12 through 20 of gestation. In contrast, neither agent was effective in the 21 day pregnant rat myometrium. The decrease in the cAMP inhibitory mechanism was correlated with a decrease in PKA and an increase in protein phosphatase 2B (PP2B) concentration in rat myometrial plasma membranes on day 21 of gestation. In myometrial total cell homogenates, both PKA and PP2B concentration increased on day 21. S-Ht31 inhibited cAMP inhibition of phosphatidylinositide turnover in day 19 pregnant rat myometrium. Both PKA and PP2B coimmunoprecipitated with an AKAP150 in a gestational dependent manner, suggesting this AKAP localizes PKA and PP2B to the plasma membrane. ^ These data presented demonstrate the importance of the cAMP inhibitory mechanism in regulating uterine contractility. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vitro conversion of phosphatidylglycerophosphate (PGP) to phosphatidylglycerol (PG) involves at least two membrane bound phosphatases in Escherichia coli. The genes encoding these two PGP-phosphatases, pgpA and pgpB, are unique and map distally to min 10 and min 28 respectively. Although point mutations in either or both of these genes decrease the level of PGP phosphatase as assayed in vitro, and also result in a minor accumulation of the precursor, PGP, in the membrane, the mutations have no significant effect on the level of PG in the cell (Icho, T. and Raetz, C. R. H. (1983) J. Bact. 153, 722-730). This dilemma suggests that there remains a significant level of phosphatase activity in the pgpAand pgpB mutants which is sufficient to support normal PG metabolism in vivo, but it is not clear whether this activity is a consequence of a separate phosphatase, or due to "leakiness" of the point lesions in these genes. To address this problem, we have constructed null alleles of the two phosphatase genes, and characterized the effects of these mutations on PG metabolism. Our findings demonstrate that neither the pgpA nor the pgpB phosphatase gene is essential for cell viability. In addition, similar to the pgpA$\sp{-}$, pgpB$\sp{-}$ double point mutant, a strain containing both of the corresponding null alleles still retains enough phosphatase activity to maintain normal levels of PG in the membrane. These data demonstrate that there exists at least a third gene encoding a major biosynthetic phosphatase which is responsible for the in vivo conversion of PGP to PG, and calls into question the actual roles of the pgpA and the pgpB gene products in PG metabolism and cell function. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interferons (IFNs) have been shown to exert antiviral, cell growth regulatory, and immunomodulatory effects on target cells. Both type I (α and β) and type II (γ) IFNs regulate cellular activities by specifically inducing the expression or activation of endogenous proteins that perform distinct biological functions. p202 is a 52 kDa nuclear phosphoprotein known to be induced by IFNs. p202 interacts with a variety of cellular transcription and growth regulatory factors and affects their functions. ^ In this report, we showed that the expression of p202 was associated with an anti-proliferative effect on human prostate cancer cells. Cells that expressed p202 showed reduced ability to grow in soft-agar, indicating a loss of transformation phenotype. More importantly, p202 expression reduced the tumorigenicity of human prostate cancer cells. p202-expressing cells exhibit an elevated level of hypophosphorylated form of pRb, and reduced level of cyclin B1 and p55CDC. ^ Our data suggest that p202 is a growth inhibitor gene in prostate cancer cells and its expression may also suppress transformation phenotype and tumorigenicity of prostate cancer cells. ^ In addition to inhibiting in vitro cell growth, suppressing the tumorigenicity of breast cancer cells in vivo, p202 expression could sensitize breast cancer cells to apoptosis induced by TNF-α treatment. One possible mechanism contributing to this sensitization is the inactivation of NF-κB by its interaction with p202. These results provide a scientific basis for a novel therapeutic strategy that combines p202 and TNF-α treatment against breast cancer. ^ It has been reported that NF-κB is constitutively active in human pancreatic cancer cells. Since p202 interacts with NF-κB and inhibits its activity, we examined a potential p202-mediated anti-tumor activity in pancreatic cancer. We used both ectopic and orthotopic xenograft models and demonstrated that p202 expression is associated with multiple anti-tumor activities that include inhibition of tumor growth, reduced tumorigenicity, prolonged survival, and remarkably, suppression of metastasis and angiogenesis. In vitro invasion assay also showed that p202-expressing pancreatic cancer cells are less invasive than those without p202 expression. That observation was supported by the findings that p202-expressing tumors showed reduced expression of angiogenic factors such as IL-8, and VEGF by inhibiting their transcription, and p202-expressing pancreatic cancer cells have reduced level of MAP-2 activity, a secreted protease activity important for metastasis. Together, our results strongly suggest that p202 expression mediates multiple anti-tumor activities against pancreatic cancer, and that may provide a scientific basis for developing a p202-based gene therapy in pancreatic cancer treatment. ^ Importantly, we demonstrated a treatment efficacy by using p202/SN2 liposome complex in a nude mice orthotopic breast cancer, and an ectopic pancreatic cancer xenograft model, through systemic and intra-tumor injection respectively. These results suggest a feasibility of using p202/SN2 liposome in future pre-clinical gene therapy experiments. ^