25 resultados para protective immunity

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hypothesis tested was that rapid rejection of Trichinella spiralis infective larvae from immunized rats following a challenge infection is associated with a local anaphylactic reaction, and this response should be reflected in altered small intestinal motility. The objective was to determine if altered gut smooth muscle function accompanies worm rejection based on the assumption that anaphylaxis in vivo could be detected by changes in intestinal smooth muscle contractile activity (ie. an equivalent of the Schultz-Dale reaction or in vitro anaphylaxis). The aims were to (1) characterize motility changes by monitoring intestinal myoelectric activity in conscious rats during the enteric phase of T. spiralis infection in immunized hosts, (2) detect the onset and magnitude of myoelectric changes caused by challenge infection in immunized rats, (3) determine the parasite stimulus causing changes, and (4) determine the specificity of host response to stimulation. Electrical slow wave frequency, spiking activity, normal interdigestive migrating myoelectric complexes and abnormal migrating action potential complexes were measured. Changes in myoelectric parameters induced by larvae inoculated into the duodenum of immune hosts differed from those associated with primary infection with respect to time of onset, magnitude and duration. Myoelectric changes elicited by live larvae could not be reproduced by inoculation of hosts with dead larvae, larval excretory-secretory products, or by challenge with a heterologous parasite, Eimeria nieschulzi. These results indicate that (1) local anaphylaxis is a component of the initial response to T. spiralis in immune hosts, since the rapid onset of altered smooth muscle function parallels in time the expression of rapid rejection of infective larvae, and (2) an active mucosal penetration attempt by the worm is necessary to elicit this host response. These findings provide evidence that worm rejection is a consequence of, or sequel to, an immediate hypersensitivity reaction elicited when parasites attempt to invade the gut mucosa of immunized hosts. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Helicobacter pylori, which colonizes the stomach and causes the most common chronic infection in man, is associated with peptic ulceration, gastric carcinoma and gastric lymphoma. Studies in animals demonstrated that mucosal immunization could induce immune response against H. pylori and prevent H. pylori infection only if powerful mucosal adjuvants such as cholera toxin (CT) or heat-labile toxin of E. coli (LT) were used along with an H. pylori protein antigen. Adjuvants such as CT or LT cannot be used for humans because of their toxicity. Finding non-toxic alternative adjuvants/immunomodulators or immunization strategies that eliminates the use of adjuvants is critical for the development of efficacious human Helicobacter vaccines. We investigated whether several new adjuvants such as Muramyl Tripeptide Phosphatidylethonolamine (MTP-PE), QS21 (a Quil A derivative), Monophosphoryl lipid A (MPL) or heat shock proteins (HSP) of Mycobacterium tuberculosis could be feasible to develop a safe and effective mucosal vaccine against H. pylori using a murine model. C57/BL6 mice were immunized with liposomes incorporating each adjuvant along with urease, a major antigenic protein of H. pylori, to test their mucosal effectiveness. Since DNA vaccination eliminates both the use of adjuvants and antigens we also investigated whether immunization with plasmid DNA encoding urease could induce protective immunity to H. pylori infection in the same murine model. We found that oral vaccination with liposomal MTP-PE (6.7 m g) and urease, (100 m g) induced antigen-specific systemic and mucosal immune response and protected mice against H. pylori challenge when compared to control groups. Parenteral and mucosal immunizations with as little as 20 m g naked or formulated DNA encoding urease induced systemic and mucosal immune response against urease and partially protected mice against H. pylori infection. DNA vaccination provided long-lasting immunity and serum anti-urease IgG antibodies were elevated for up to 12 months. No toxicity was detected after immunizations with either liposomal MTP-PE and urease or plasmid DNA and both were well tolerated. We conclude that immunization liposomes containing MTP-PE and urease is a promising strategy deserving further investigation and may be considered for humans. DNA vaccination could be used to prime immune response prior to oral protein vaccination and may reduce the dose of protein and adjuvant needed to achieve protective immunity. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adjuvants are essential components of vaccine formulations that enhance adaptive immune responses to antigens, particularly for immunizations targeting the tolerogenic mucosal tissues, which are more biologically relevant for protective immunity against pathogens transmitted by the mucosal routes. Adjuvants possess the inherent capacity to bridge innate and adaptive immune responses through activating innate immune mediators. Here evidence is presented in support of the effectiveness of a synthetic glycolipid, alpha-Galactosylceramide (-GalCer), as an adjuvant for mucosal immunization with peptide and protein antigens, by oral and intranasal routes, to prime antigen-specific immune responses in multiple systemic and mucosal compartments. The adjuvant activity of -GalCer delivered by the intranasal route was manifested in terms of potent activation of NKT cells, an important innate immunity mediator, along with the activation of dendritic cells (DC) which serve as the professional antigen-presenting cells. Data from this investigation provide the first evidence for mucosal delivery as an effective means to harness the adjuvant potential of α-GalCer for priming as well as boosting cellular immune responses to co-administered immunogens. Unlike systemic administration where a single dose of α-GalCer leads to anergy of responding NKT cells and thus hinders delivery of booster immunizations, we demonstrated that administration of multiple doses of α-GalCer by the intranasal route affords repeated activation of NKT cells and the induction of broad systemic and mucosal immunity. This is specifically advantageous, and may be even essential, for vaccination regimens against mucosal pathogens such as the human immunodeficiency virus (HIV) and the human papillomavirus (HPV), where priming of durable protective immunity at the mucosal portals of pathogen entry would be highly desirable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While prior studies have focused on naïve (CD45RA+CD27+) and early stage memory (CD45RA-CD27+) CD8+ T cells, late memory CD8+ T cells (CD45RA+CD27) have received less interest because this subset of T cells is generally recognized as effectors, which produce IFNγ (but no IL-2) and perforin. However, multiple studies suggest that late memory CD8+ T cells may provide inadequate protection in infectious diseases and cancer models. To better understand the unique function of late memory CD8+ T cells, I optimized multi-color flow cytometry techniques to assess the cytokine production of each human CD8+ T cell maturation subset. I demonstrated that late memory CD8+ T cells are the predominant producer of CC chemokines (e.g. MIP-1β), but rarely produce IL-2; therefore they do not co-produce IL-2/IFNγ (polyfunctionality), which has been shown to be critical for protective immunity against chronic viral infection. These data suggest that late memory CD8+ T cells are not just cytotoxic effectors, but may have unique functional properties. Determining the molecular signature of each CD8+ T cell maturation subset will help characterize the role of late memory CD8+ T cells. Prior studies suggest that ERK1 and ERK2 play a role in cytokine production including IL-2 in T cells. Therefore, I tested whether differential expression of ERK1 and ERK2 in CD8+ T cell maturation subsets contributes to their functional signature by a novel flow cytometry technique. I found that the expression of total ERK1, but not ERK2, is significantly diminished in late memory CD8+ T cells and that ERK1 expression is strongly associated with IL-2 production and CD28 expression. I also found that IL-2 production is increased in late memory CD8+ T cells by over-expressing ERK1. Collectively, these data suggest that ERK1 is required for IL-2 production in human CD8+ T cells. In summary, this dissertation demonstrated that ERK1 is down-regulated in human late memory CD8+ T cells, leading to decreased production of IL-2. The data in this dissertation also suggested that the functional heterogeneity in human CD8+ T cell maturation subsets results from their differential ERK1 expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite the availability of hepatitis B vaccine for over two decades, drug users and other high-risk adult populations have experienced low vaccine coverage. Poor compliance has limited efforts to reduce transmission of hepatitis B infection in this population. Evidence suggests that immunological response in drug users is impaired compared to the general population, both in terms of lower seroprotection rates and antibodies levels.^ The current study investigated the effectiveness of the multi-dose hepatitis B vaccine and compared the effect of the standard and accelerated vaccine schedules in a not-in-treatment, drug-using adult population in the city of Houston, USA.^ A population of drug-users from two communities in Houston, susceptible to hepatitis B, was sampled by outreach workers and referral methodology. Subjects were randomized either to the standard hepatitis vaccine schedule (0, 1-, 6-month) or to an accelerated schedule (0, 1-, 2-month). Antibody levels were detected through laboratory analyses at various time-points. The participants were followed for two years and seroconversion rates were calculated to determine immune response.^ A four percent difference in the overall compliance rate was observed between the standard (73%) and accelerated schedules (77%). Logistic regression analyses showed that drug users living on the streets were twice as likely to not complete all three vaccine doses (p=0.028), and current speedball use was also associated with non-completion (p=0.002). Completion of all three vaccinations in the multivariate analysis was also correlated with older age. Drug users on the accelerated schedule were 26% more likely to achieve completion, although this factor was marginally significant (p=0.085).^ Cumulative adequate protective response was gained by 65% of the HBV susceptible subgroup by 12-months and was identical for both the standard and accelerated schedules. Excess protective response (>=100 mIU/mL) occurred with greater frequency at the later period for the standard schedule (36% at 12-months compared to 14% at six months), while the greater proportion of excess protective response for the accelerated schedule occurred earlier (34% at 6 months compared to 18% at 12-months). Seroconversion at the adequate protective response level of 10 mIU/mL was reached by the accelerated schedule group at a quicker rate (62% vs. 49%), and with a higher mean titer (104.8 vs. 64.3 mIU/mL), when measured at six months. Multivariate analyses indicated a 63% increased risk of non-response for older age and confirmed the existence of an accelerating decline in immune response to vaccination manifesting after 40 years (p=0.001). Injecting more than daily was also highly associated with the risk of non-response (p=0.016).^ The substantial increase in the seroprotection rate at six months may be worth the trade-off against the faster antibody titer decrease and is recommended for enhancing compliance and seroconversion. Utilization of the accelerated schedule with the primary objective of increasing compliance and seroconversion rates during the six months after the first dose may confer early protective immunity and reduce the HBV vulnerability of drug users who continue, or have recently initiated, increased high risk drug use and sexual behaviors.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study addresses the questions of whether the frequency of generation and in vivo cross-reactivity of highly immunogenic tumor clones induced in a single parental murine fibrosarcoma cell line MCA-F is more closely related to the agent used to induce the Imm$\sp{+}$ clone or whether these characteristics are independent of the agents used. These questions were addressed by treating the parental tumor cell line MCA-F with UV-B radiation (UV-B), 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), or 5-aza-2$\sp\prime$-deoxycytidine (5-azaCdR). The frequency of Imm$\sp{+}$ variant generation was similarly high for the three different agents, suggesting that the frequency of Imm$\sp{+}$ generation was related more closely to the cell line than to the inducing agent used. Cross-reactivity was tested with two Imm$\sp{+}$ clones from each treatment group in a modified immunoprotection assay that selectively engendered antivariant, but not antiparental immunity. Under these conditions each clone, except one, immunized against itself. The MNNG-induced clones engendered stronger antivariant immunity but a weaker variant cross-reactive immunity could also be detected.^ This study also characterized the lymphocyte populations responsible for antivariant and antiparental immunity in vivo. Using the local adoptive transfer assay (LATA) and antibody plus complement depletion of T-cell subsets, we showed that immunity induced by the Imm$\sp{+}$ variants against the parent MCA-F was transferred by the Thy1.2$\sp{+}$, L3T4a$\sp{+}$, Lyt2.1$\sp{-}$ (CD4$\sp{+}$) population, without an apparent contribution by Thy1.2$\sp{+}$, L3T4a$\sp{-}$, Lyt2.1$\sp{+}$ (CD8$\sp{+}$) cells. A role for Lyt2.1$\sp{+}$T lymphocytes in antivariant, but not antiparent immunity was supported by the results of LATA and CTL assays. Immunization with low numbers of viable Imm$\sp{+}$ cells, or with high numbers of non viable Imm$\sp{+}$ cells engendered only antivariant immunity without parental cross-protection. The associative recognition of parental antigens and variant neoantigens resulting in strong antiparent immunity was investigated using somatic cells hybrids of Imm$\sp{+}$ variants of MCA-F and an antigenically distinct tumor MCA-D. An unexpected result of these latter experiments was the expression of a unique tumor-specific antigen by the hybrid cells. These studies demonstrate that the parental tumor-specific antigen and the variant neoantigen must be coexpressed on the cell surface to engender parental cross-protective immunity. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis remains one of the leading causes of death in man due to a single infectious agent. An estimated one-third of the world's population is infected with the causative agent, Mycobacterium tuberculosis (Mtb), despite the availability of the widely used vaccine, BCG. BCG has significantly varying protection rates with the lowest level of protection seen with the most common form of TB, adult pulmonary TB. Thus, numerous studies are being conducted to develop a more efficient vaccine. The ideal candidate vaccine would possess the ability to induce a solid and strong Th1 response, as this is the subset of T cells primarily involved in clearance of the infection. A novel vaccine should also induce such a response that may be recalled and expanded upon subsequent infection. Our group has introduced a mutant of a virulent strain of Mtb which lacks a component of the immunogenic antigen 85 complex (Ag85). Our vaccine, ΔfbpA, does not secrete the fibronectin binding protein Ag85A, and this has shown to lead to its attenuation in both murine macrophages and mice. Previous studies have also proven that ΔfbpA is more protective in mice than BCG against virulent aerosol challenge with Mtb. This study addresses the mechanisms of protection observed with ΔfbpA by phenotyping responding T cells. We first evaluated the ability of dendritic cells to present the mycobacteria to naïve T cells, an in vitro mock of primary immunization. We also measured the response of primed T cells to macrophage-presented mycobacteria to interpret the possible response of a vaccinated host to a boost. We concluded that ΔfbpA can elicit a stronger Th1 response compared to BCG in vitro, and further observed that this enhanced response is at least partly due to the presence of proteins encoded by a region of the genome absent in all strains of BCG. Finally, we observed this heightened Th1 response in the mouse model after primary vaccination and a virulent aerosol challenge. The cytolytic T cell response was also measured after virulent challenge and was found to be superior in the ΔfbpA-treated group when compared to the BCG group. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dialysis patients are at high risk for hepatitis B infection, which is a serious but preventable disease. Prevention strategies include the administration of the hepatitis B vaccine. Dialysis patients have been noted to have a poor immune response to the vaccine and lose immunity more rapidly. The long term immunogenicity of the hepatitis B vaccine has not been well defined in pediatric dialysis patients especially if administered during infancy as a routine childhood immunization.^ Purpose. The aim of this study was to determine the median duration of hepatitis B immunity and to study the effect of vaccination timing and other cofactors on the duration of hepatitis B immunity in pediatric dialysis patients.^ Methods. Duration of hepatitis B immunity was determined by Kaplan-Meier survival analysis. Comparison of stratified survival analysis was performed using log-rank analysis. Multivariate analysis by Cox regression was used to estimate hazard ratios for the effect of timing of vaccine administration and other covariates on the duration of hepatitis B immunity.^ Results. 193 patients (163 incident patients) had complete data available for analysis. Mean age was 11.2±5.8 years and mean ESRD duration was 59.3±97.8 months. Kaplan-Meier analysis showed that the total median overall duration of immunity (since the time of the primary vaccine series) was 112.7 months (95% CI: 96.6, 124.4), whereas the median overall duration of immunity for incident patients was 106.3 months (95% CI: 93.93, 124.44). Incident patients had a median dialysis duration of hepatitis B immunity equal to 37.1 months (95% CI: 24.16, 72.26). Multivariate adjusted analysis showed that there was a significant difference between patients based on the timing of hepatitis B vaccination administration (p<0.001). Patients immunized after the start of dialysis had a hazard ratio of 6.13 (2.87, 13.08) for loss of hepatitis B immunity compared to patients immunized as infants (p<0.001).^ Conclusion. This study confirms that patients immunized after dialysis onset have an overall shorter duration of hepatitis B immunity as measured by hepatitis B antibody titers and after the start of dialysis, protective antibody titer levels in pediatric dialysis patients wane rapidly compared to healthy children.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western countries. The interaction between CLL cells and the bone marrow stromal environment is thought to play a major role in promoting the leukemia cell survival and drug resistance. My dissertation works proved a novel biochemical mechanism by which the bone marrow stromal cells exert a profound influence on the redox status of primary CLL cells and enhance their ability to sustain oxidative stress and drug treatment. Fresh leukemia cells isolated from the peripheral blood of CLL patients exhibited two major redox alterations when they were cultured alone: a significant decrease in cellular glutathione (GSH) and an increase in basal ROS levels. However, when cultured in the presence of bone marrow stromal cells, CLL cells restored their redox balance with an increased synthesis of GSH, a decrease in spontaneous apoptosis, and an improved cell survival. Further study showed that CLL cells were under intrinsic ROS stress and highly dependent on GSH for survival, and that the bone marrow stromal cells promoted GSH synthesis in CLL cells through a novel biochemical mechanism. Cysteine is a limiting substrate for GSH synthesis and is chemically unstable. Cells normally obtain cysteine by uptaking the more stable and abundant precursor cystine from the tissue environment and convert it to cysteine intracellularly. I showed that CLL cells had limited ability to take up extracellular cystine for GSH synthesis due to their low expression of the transporter Xc-, but had normal ability to uptake cysteine. In the co-culture system, the bone marrow stromal cells effectively took up cystine and reduced it to cysteine for secretion into the tissue microenvironment to be taken up by CLL cells for GSH synthesis. The elevated GSH in CLL cells in the presence of bone marrow stromal cells significantly protected the leukemia cells from stress-induced apoptosis, and rendered them resistant to standard therapeutic agents such as fludarabine and oxaliplatin. Importantly, disabling of this protective mechanism by depletion of cellular GSH using a pharmacological approach potently sensitized CLL cells to drug treatment, and effectively enhanced the cytotoxic action of fludarabine and oxaliplatin against CLL in the presence of stromal cells. This study reveals a key biochemical mechanism of leukemia-stromal cells interaction, and identifies a new therapeutic strategy to overcome drug resistance in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common test to identify latent tuberculosis is the tuberculin skin test that detects T cell responses of delayed type hypersensitivity type IV. Since it produces false negative reactions in active tuberculosis or in high-risk persons exposed to tuberculosis patients as shown in this report, we studied antibody profiles to explain the anergy of such responses in high-risk individuals without active infection. Our results showed that humoral immunity against tuberculin, regardless of the result of the tuberculin skin test is important for protection from active tuberculosis and that the presence of high antibody titers is a more reliable indicator of infection latency suggesting that latency can be based on the levels of antibodies together with in vitro proliferation of peripheral blood mononuclear cells in the presence of the purified protein derivative. Importantly, anti-tuberculin IgG antibody levels mediate the anergy described herein, which could also prevent reactivation of disease in high-risk individuals with high antibody titers. Such anti-tuberculin IgG antibodies were also found associated with blocking and/or stimulation of in vitro cultures of PBMC with tuberculin. In this regard, future studies need to establish if immune responses to Mycobacterium tuberculosis can generate a broad spectrum of reactions either toward Th1 responses favoring stimulation by cytokines or by antibodies and those toward diminished responses by Th2 cytokines or blocking by antibodies; possibly involving mechanisms of antibody dependent protection from Mtb by different subclasses of IgG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, is the most lethal single infectious agent afflicting man today causing 2 million deaths per year. The World Health Organization recommends a vaccine as the best option to prevent this disease. The current vaccine, BCG, has a variable efficacy and does not protect adults. It is known that BCG vaccine becomes sequestered in special phagosome compartments of macrophages that do not fuse with lysosomes. Since lysosome fusion is necessary for peptide production and T cell priming leading to protective TH1 immunity, we hypothesized that vaccine efficacy is reduced and occurs perhaps due to non-lysosome dependent mechanisms. We therefore proposed an in depth analysis of phagosome environment, and its proteome to unravel mechanisms of antigen processing and presentation. We initially discovered that three mechanisms of pH regulation including vacuolar proton ATPase, phagocyte oxidase and superoxide dismutase (SOD) secretion from BCG vaccine affect antigen processing within phagosomes. These studies led to the discovery that a mutant of BCG vaccine which lacked SOD was a better vaccine. Subsequently, the proteomic analysis of vaccine phagosomes led to the discovery of novel protease (γ-secretase) enriched on BCG vaccine phagosomes. We then demonstrated that these proteases generated a peptide from the BCG vaccine which was presented through the MHC-II pathway to T cells and induced a TH1 response. The specificity of antigen production from γ-secretase was confirmed through siRNA knockdown of the components of the protease namely, nicastrin, presenilin and APH, which led to a decrease in antigen presentation. We therefore conclude that, even though BCG phagosomes are sequestered and do not fuse with lysosomes to generate peptide antigens, there are complex and novel in situ mechanisms within phagosomes that are capable of generating an immune response. We conclude that TH1 immunity to BCG vaccine arises mostly due to non-lysosome dependent immune mechanisms of macrophages and dendritic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general objective of this research was to compare the relative effectiveness of court mandated services versus a voluntary service plan in preventing in child maltreatment recidivism. Four-thirty-two children were selected at random from among children in a large California County who were receiving in-home services under a court mandate or a voluntary plan. Protective services files of study children were reviewed to derive study data. Type of plan did not make a difference on case outcome. Children were more likely to remain in the home at the end of the service delivery period in families that received voluntary plans. However, when other factors are controlled, the advantage of a voluntary plan disappears. Moreover, similar rates of recidivism were noted between both types of plans after the case was closed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultraviolet (UV) radiation produces immunological alterations in both humans and animals that include a decrease in the delayed type hypersensitivity (DTH) response to complex antigens, and to the induction of the suppressor T cell pathway. Cell-mediated immunity of the type that is altered by UV radiation has been shown to be important in host resistance against microorganisms. My dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans.^ The (DTH) response of C3H mice exposed to ultraviolet (UV) radiation before (afferent arm of DTH) or after (efferent arm of DTH) infection with Candida albicans was markedly and systemically suppressed. Although suppression of both the afferent and efferent phases of DTH were caused by similar wavebands within the ultraviolet region, the dose of UV radiation that suppressed the efferent arm of DTH was 10-fold higher than the dose that suppressed the afferent arm of the DTH reaction.^ The DTH response of C57BL/6 mice was also suppressed by UV radiation; however the suppression was accomplished by exposure to significantly lower doses UV radiation compared to C3H mice. In C57BL/6 mice, the dose of UV radiation that suppressed the afferent phase of DTH was 5-fold higher than the dose that suppressed the efferent phase.^ Exposure of C3H mice to UV radiation before sensitization induced splenic suppressor T cells that upon transfer to normal recipients, impaired the induction of DTH to Candida. In contrast, the suppression caused by UV irradiation of mice after sensitization was not transferable. Spleen cells from sensitized mice exhibited altered homing patterns in animals that were exposed to UV radiation shortly before receiving cells, suggesting that UV-induced suppression of the efferent arm of DTH could result from an alteration in the distribution of effector cells.^ UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the DTH response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organism from the kidneys of UV-irradiated mice.^ These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus is an opportunistic pathogen that is a major health threat in the clinical and community settings. An interesting hallmark of patients infected with S. aureus is that they do not usually develop a protective immune response and are susceptible to reinfection, in part because of the ability of S. aureus to modulate host immunity. The ability to evade host immune responses is a key contributor to the infection process and is critical in S. aureus survival and pathogenesis. This study investigates the immunomodulatory effects of two secreted proteins produced by S. aureus, the MHC class II analog protein (Map) and the extracellular fibrinogen-binding protein (Efb). Map has been demonstrated to modulate host immunity by interfering with T cell function. Map has been shown to significantly reduce T cell proliferative responses and significantly reduce delayed-type hypersensitivity responses to challenge antigen. In addition, the effects of Map on the infection process were tested in a mouse model of infection. Mice infected with Map− S. aureus (Map deficient strain) presented with significantly reduced levels of arthritis, osteomyelitis and abscess formation compared to mice infected with the wild-type Map+S. aureus strain suggesting that Map−S. aureus is much less virulent than Map+S. aureus. Furthermore, Map−S. aureus-infected nude mice developed arthritis and osteomyelitis to a severity similar to Map +S. aureus-infected controls, suggesting that T cells can affect disease outcome following S. aureus infection and Map may attenuate cellular immunity against S. aureus. The extracellular fibrinogen-binding protein (Efb) was identified when cultured S. aureus supernatants were probed with the complement component C3. The binding of C3 to Efb resulted in studies investigating the effects of Efb on complement activation. We have demonstrated that Efb can inhibit both the classical and alternative complement pathways. Moreover, we have shown that Efb can inhibit complement mediated opsonophagocytosis. Further studies have characterized the Efb-C3 binding interaction and localized the C3-binding domain to the C-terminal region of Efb. In addition, we demonstrate that Efb binds specifically to a region within the C3d fragment of C3. This study demonstrates that Map and Efb can interfere with both the acquired and innate host immune pathways and that these proteins contribute to the success of S. aureus in evading host immunity and in establishing disease. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rates of syphilis in the United States have increased since the all time low in 2000. In 2003, the rates of syphilis in the United States were 2.5 cases per 100,000. There were 178 reported cases of primary and secondary syphilis (8.9 cases per 100,000) in Houston, Texas, which was a 58.9% increase from 2002. While syphilis can be completely treated now, unlike in times past, it is still a public health concern. The purpose of this study is to examine the possibility of modeling the impact of an immune response in primary and secondary syphilis in 63 major cities across the United States, stratified by gender and racial-ethnic groups. A Fourier analysis will be performed by SAS. Subsequently, this study will compare the results to a similar study of syphilis in 68 US cities, that focused on immune response, however, did not stratified by race and gender. This study will help determine if the oscillating rates of syphilis are due to biological factors of the disease or to behavioral changes in the population. This study will use surveillance data from 63 major cities across the United States. The data will be provided by the Centers of Disease Control. Ultimately, this study will expand the knowledge of the effect of immunity on endemics.^