4 resultados para proper fraction

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The successful management of cancer with radiation relies on the accurate deposition of a prescribed dose to a prescribed anatomical volume within the patient. Treatment set-up errors are inevitable because the alignment of field shaping devices with the patient must be repeated daily up to eighty times during the course of a fractionated radiotherapy treatment. With the invention of electronic portal imaging devices (EPIDs), patient's portal images can be visualized daily in real-time after only a small fraction of the radiation dose has been delivered to each treatment field. However, the accuracy of human visual evaluation of low-contrast portal images has been found to be inadequate. The goal of this research is to develop automated image analysis tools to detect both treatment field shape errors and patient anatomy placement errors with an EPID. A moments method has been developed to align treatment field images to compensate for lack of repositioning precision of the image detector. A figure of merit has also been established to verify the shape and rotation of the treatment fields. Following proper alignment of treatment field boundaries, a cross-correlation method has been developed to detect shifts of the patient's anatomy relative to the treatment field boundary. Phantom studies showed that the moments method aligned the radiation fields to within 0.5mm of translation and 0.5$\sp\circ$ of rotation and that the cross-correlation method aligned anatomical structures inside the radiation field to within 1 mm of translation and 1$\sp\circ$ of rotation. A new procedure of generating and using digitally reconstructed radiographs (DRRs) at megavoltage energies as reference images was also investigated. The procedure allowed a direct comparison between a designed treatment portal and the actual patient setup positions detected by an EPID. Phantom studies confirmed the feasibility of the methodology. Both the moments method and the cross-correlation technique were implemented within an experimental radiotherapy picture archival and communication system (RT-PACS) and were used clinically to evaluate the setup variability of two groups of cancer patients treated with and without an alpha-cradle immobilization aid. The tools developed in this project have proven to be very effective and have played an important role in detecting patient alignment errors and field-shape errors in treatment fields formed by a multileaf collimator (MLC). ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic β-blocker treatment improves survival and left ventricular ejection fraction (LVEF) in patients with systolic heart failure (HF). Data on whether the improvement in LVEF after β-blocker therapy is sustained for a long term or whether there is a loss in LVEF after an initial gain is not known. Our study sought to determine the prevalence and prognostic role of secondary decline in LVEF in chronic systolic HF patients on β-blocker therapy and characterize these patients. Retrospective chart review of HF hospitalizations fulfilling Framingham Criteria was performed at the MEDVAMC between April 2000 and June 2006. Follow up vital status and recurrent hospitalizations were ascertained until May 2010. Three groups of patients were identified based on LVEF response to beta blockers; group A with secondary decline in LVEF following an initial increase, group B with progressive increase in LVEF and group C with progressive decline in LVEF. Covariate adjusted Cox proportional hazard models were used to examine differences in heart failure re-hospitalizations and all cause mortality between the groups. Twenty five percent (n=27) of patients had a secondary decline in LVEF following an initial gain. The baseline, peak and final LVEF in this group were 27.6±12%, 40.1±14% and 27.4±13% respectively. The mean nadir LVEF after decline was 27.4±13% and this decline occurred at a mean interval of 2.8±1.9 years from the day of beta blocker initiation. These patients were older, more likely to be whites, had advanced heart failure (NYHA class III/IV) more due to a non ischemic etiology compared to groups B & C. They were also more likely to be treated with metoprolol (p=0.03) compared to the other two groups. No significant differences were observed in combined risk of all cause mortality and HF re-hospitalization [hazard ratio 0.80, 95% CI 0.47 to 1.38, p=0.42]. No significant difference was observed in survival estimates between the groups. In conclusion, a late decline in LVEF does occur in a significant proportion of heart failure patients treated with beta blockers, more so in patients treated with metoprolol.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Racial differences in heart failure with preserved ejection fraction (HFpEF) have rarely been studied in an ambulatory, financially "equal access" cohort, although the majority of such patients are treated as outpatients. ^ Retrospective data was collected from 2,526 patients (2,240 Whites, 286 African American) with HFpEF treated at 153 VA clinics, as part of the VA External Peer Review Program (EPRP) between October 2000 and September 2002. Kaplan Meier curves (stratified by race) were created for time to first heart failure (HF) hospitalization, all cause hospitalization and death and Cox proportional multivariate regression models were constructed to evaluate the effect of race on these outcomes. ^ African American patients were younger (67.7 ± 11.3 vs. 71.2 ± 9.8 years; p < 0.001), had lower prevalence of atrial fibrillation (24.5 % vs. 37%; p <0.001), chronic obstructive pulmonary disease (23.4 % vs. 36.9%, p <0.001), but had higher blood pressure (systolic blood pressure > 120 mm Hg 77.6% vs. 67.8%; p < 0.01), glomerular filtration rate (67.9 ± 31.0 vs. 61.6 ± 22.6 mL/min/1.73 m2; p < 0.001), anemia (56.6% vs. 41.7%; p <0.001) as compared to whites. African Americans were found to have higher risk adjusted rate of HF hospitalization (HR 1.52, 95% CI 1.1 - 2.11; p = 0.01), with no difference in risk-adjusted all cause hospitalization (p = 0.80) and death (p= 0.21). ^ In a financially "equal access" setting of the VA, among ambulatory patients with HFpEF, African Americans have similar rates of mortality and all cause hospitalization but have an increased risk of HF hospitalizations compared to whites.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone acetylation is a central event in transcriptional activation. The importance of this modification in mammalian development is highlighted by knockout studies that revealed loss of the histone acetyltransferases GCN5, p300, or CBP results in embryonic lethality. Furthermore, early embryogenesis is sensitive to the dosage of p300 and CBP since double p300 +/−CBP+/− heterozygotes die in utero, although either single heterozygote survives. PCAF and GCN5 physically interact with p300 and CBP in vitro. To determine whether these two groups of HATs interact functionally in vivo, we created mice lacking one or more allele of p300, GCN5 or PCAF. As expected, we found that mice heterozygous for any one of these null alleles are viable. The majority of GCN5 p300 double heterozygotes also survive to adulthood with no apparent abnormalities. However, a portion of these mice die prior to birth. These embryos are developmentally stunted and exhibit increased apoptosis compared to wild type or single GCN5 or p300 heterozygous littermates at E8.5. Tissue specification is unaffected in these embryos but organ formation is compromised. In contrast, no abnormalities were observed in mice harboring mutations in both PCAF and p300 , emphasizing the specificity of HAT functions in mammalian development. ^ Since GCN5 null embryos die early in embryogenesis because of a marked increase in apoptosis, studies of its function and mechanism in late development and in tissue specific differentiation are precluded. Here, we also report the establishment of a GCN5 null embryonic stem cell line and a conditional floxGCN5 mouse line, which will serve as powerful genetic tools to examine in depth the function of GCN5 in mammalian development and in adult tissues. ^