2 resultados para production techniques

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesenchymal stromal cell (MSC) therapy has shown promise for the treatment of traumatic brain injury (TBI). Although the mechanism(s) by which MSCs offer protection is unclear, initial in vivo work has suggested that modulation of the locoregional inflammatory response could explain the observed benefit. We hypothesize that the direct implantation of MSCs into the injured brain activates resident neuronal stem cell (NSC) niches altering the intracerebral milieu. To test our hypothesis, we conducted initial in vivo studies, followed by a sequence of in vitro studies. In vivo: Sprague-Dawley rats received a controlled cortical impact (CCI) injury with implantation of 1 million MSCs 6 h after injury. Brain tissue supernatant was harvested for analysis of the proinflammatory cytokine profile. In vitro: NSCs were transfected with a firefly luciferase reporter for NFkappaB and placed in contact culture and transwell culture. Additionally, multiplex, quantitative PCR, caspase 3, and EDU assays were completed to evaluate NSC cytokine production, apoptosis, and proliferation, respectively. In vivo: Brain supernatant analysis showed an increase in the proinflammatory cytokines IL-1alpha, IL-1beta, and IL-6. In vitro: NSC NFkappaB activity increased only when in contact culture with MSCs. When in contact with MSCs, NSCs show an increase in IL-6 production as well as a decrease in apoptosis. Direct implantation of MSCs enhances neuroprotection via activation of resident NSC NFkappaB activity (independent of PI3 kinase/AKT pathway) leading to an increase in IL-6 production and decrease in apoptosis. In addition, the observed NFkappaB activity depends on direct cell contact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InGen of Creative Production in the Health Sciences is a compendium of innovative thinking exercises for individuals and groups, derived from an eclectic array of practical guides for professionals in a variety of fields. Segmented into five subcategories across twenty two chapters, the effort seeks to make techniques for increasing innovative problem solving more accessible to a diverse audience of problem solvers. The chapters of Roberta Ness. Innovation Generation (2012, Oxford University Press) provide the themes for each of the chapters in the workbook. It is intended that those who read Ness. Innovation Generation will benefit from practicing the constructs of innovative thinking exemplified in each exercise.^ The methods used to gather data, in this case mostly innovative thinking exercises, included literature reviews of existing innovative thinking tools, classroom materials, and theory-driven exploration of exercises to fill in gaps in extant materials. Specifically, Google.com and Amazon.com searches were conducted using the terms “innovation,” “innovative,” “innovator,” “creative,” “novelty,” “thinking,” together with some variance of “book,” “workbook,” and “exercise.” The results were sorted thematically to show correspondence with the themes in Ness (2012) and compared to suggested best practices of 50 years of scientific research on innovative thinking. Where themes were suggested by Ness (2012) and peer-reviewed research on innovation but unavailable in published innovation thinking workbooks, new exercises were developed. The five type subcategories into which these results were organized are: individual direct, individual indirect, group direct, group indirect and probing question. It is anticipated that the five type subcategories and spectrum of themes will equip problem solvers in a variety of capacities.^