4 resultados para point dose

em DigitalCommons@The Texas Medical Center


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The RPC developed a new phantom to ensure comparable and consistent radiation administration in spinal radiosurgery clinical trials. This study assessed the phantom’s dosimetric and anatomic utility. The ‘spine phantom’ is a water filled thorax with anatomy encountered in spinal radiosurgery: target volume, vertebral column, spinal canal, esophagus, heart, and lungs. The dose to the target volume was measured with axial and sagittal planes of radiochromic film and thermoluminescent dosimeters (TLD). The dose distributions were measured with the radiochromic film calibrated to the absolute dose measured by the TLD. Four irradiations were administered: a four angle box plan, a seven angle conformal plan, a seven angle IMRT plan, and a nine angle IMRT plan (denoted as IMRT plan #1 and plan #2, respectively). In each plan, at least 95% of the defined tumor volume received 8 Gy. For each irradiation the planned and administered dose distributions were registered via pinpricks, and compared using point dose measurements, dose profiles, isodose distributions, and gamma analyses. Based on previous experience at the RPC, a gamma analysis was considering passing if greater than 95% of pixels passed the criteria of 5% dose difference and 3 mm distance-to-agreement. Each irradiation showed acceptable agreement in the qualitative assessments and exceeded the 95% passing rate at the 5% / 3 mm criteria, except IMRT plan #1, which was determined to have been poorly localized during treatment administration. The measured and planned dose distributions demonstrated acceptable agreement at the 5% / 3 mm criteria, and the spine phantom was determined to be a useful tool for the remote assessment of an institution’s treatment planning and dose delivery regimen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Virtual colonoscopy (VC) is a minimally invasive means for identifying colorectal polyps and colorectal lesions by insufflating a patient’s bowel, applying contrast agent via rectal catheter, and performing multi-detector computed tomography (MDCT) scans. The technique is recommended for colonic health screening by the American Cancer Society but not funded by the Centers for Medicare and Medicaid Services (CMS) partially because of potential risks from radiation exposure. To date, no in‐vivo organ dose measurements have been performed for MDCT scans; thus, the accuracy of any current dose estimates is currently unknown. In this study, two TLDs were affixed to the inner lumen of standard rectal catheters used in VC, and in-vivo rectal dose measurements were obtained within 6 VC patients. In order to calculate rectal dose, TLD-100 powder response was characterized at diagnostic doses such that appropriate correction factors could be determined for VC. A third-order polynomial regression with a goodness of fit factor of R2=0.992 was constructed from this data. Rectal dose measurements were acquired with TLDs during simulated VC within a modified anthropomorphic phantom configured to represent three sizes of patients undergoing VC. The measured rectal doses decreased in an exponential manner with increasing phantom effective diameter, with R2=0.993 for the exponential regression model and a maximum percent coefficient of variation (%CoV) of 4.33%. In-vivo measurements yielded rectal doses ranged from that decreased exponentially with increasing patient effective diameter, in a manner that was also favorably predicted by the size specific dose estimate (SSDE) model for all VC patients that were of similar age, body composition, and TLD placement. The measured rectal dose within a younger patient was favorably predicted by the anthropomorphic phantom dose regression model due to similarities in the percentages of highly attenuating material at the respective measurement locations and in the placement of the TLDs. The in-vivo TLD response did not increase in %CoV with decreasing dose, and the largest %CoV was 10.0%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiation therapy for patients with intact cervical cancer is frequently delivered using primary external beam radiation therapy (EBRT) followed by two fractions of intracavitary brachytherapy (ICBT). Although the tumor is the primary radiation target, controlling microscopic disease in the lymph nodes is just as critical to patient treatment outcome. In patients where gross lymphadenopathy is discovered, an extra EBRT boost course is delivered between the two ICBT fractions. Since the nodal boost is an addendum to primary EBRT and ICBT, the prescription and delivery must be performed considering previously delivered dose. This project aims to address the major issues of this complex process for the purpose of improving treatment accuracy while increasing dose sparing to the surrounding normal tissues. Because external beam boosts to involved lymph nodes are given prior to the completion of ICBT, assumptions must be made about dose to positive lymph nodes from future implants. The first aim of this project was to quantify differences in nodal dose contribution between independent ICBT fractions. We retrospectively evaluated differences in the ICBT dose contribution to positive pelvic nodes for ten patients who had previously received external beam nodal boost. Our results indicate that the mean dose to the pelvic nodes differed by up to 1.9 Gy between independent ICBT fractions. The second aim is to develop and validate a volumetric method for summing dose of the normal tissues during prescription of nodal boost. The traditional method of dose summation uses the maximum point dose from each modality, which often only represents the worst case scenario. However, the worst case is often an exaggeration when highly conformal therapy methods such as intensity modulated radiation therapy (IMRT) are used. We used deformable image registration algorithms to volumetrically sum dose for the bladder and rectum and created a voxel-by-voxel validation method. The mean error in deformable image registration results of all voxels within the bladder and rectum were 5 and 6 mm, respectively. Finally, the third aim explored the potential use of proton therapy to reduce normal tissue dose. A major physical advantage of protons over photons is that protons stop after delivering dose in the tumor. Although theoretically superior to photons, proton beams are more sensitive to uncertainties caused by interfractional anatomical variations, and must be accounted for during treatment planning to ensure complete target coverage. We have demonstrated a systematic approach to determine population-based anatomical margin requirements for proton therapy. The observed optimal treatment angles for common iliac nodes were 90° (left lateral) and 180° (posterior-anterior [PA]) with additional 0.8 cm and 0.9 cm margins, respectively. For external iliac nodes, lateral and PA beams required additional 0.4 cm and 0.9 cm margins, respectively. Through this project, we have provided radiation oncologists with additional information about potential differences in nodal dose between independent ICBT insertions and volumetric total dose distribution in the bladder and rectum. We have also determined the margins needed for safe delivery of proton therapy when delivering nodal boosts to patients with cervical cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation explores phase I dose-finding designs in cancer trials from three perspectives: the alternative Bayesian dose-escalation rules, a design based on a time-to-dose-limiting toxicity (DLT) model, and a design based on a discrete-time multi-state (DTMS) model. We list alternative Bayesian dose-escalation rules and perform a simulation study for the intra-rule and inter-rule comparisons based on two statistical models to identify the most appropriate rule under certain scenarios. We provide evidence that all the Bayesian rules outperform the traditional ``3+3'' design in the allocation of patients and selection of the maximum tolerated dose. The design based on a time-to-DLT model uses patients' DLT information over multiple treatment cycles in estimating the probability of DLT at the end of treatment cycle 1. Dose-escalation decisions are made whenever a cycle-1 DLT occurs, or two months after the previous check point. Compared to the design based on a logistic regression model, the new design shows more safety benefits for trials in which more late-onset toxicities are expected. As a trade-off, the new design requires more patients on average. The design based on a discrete-time multi-state (DTMS) model has three important attributes: (1) Toxicities are categorized over a distribution of severity levels, (2) Early toxicity may inform dose escalation, and (3) No suspension is required between accrual cohorts. The proposed model accounts for the difference in the importance of the toxicity severity levels and for transitions between toxicity levels. We compare the operating characteristics of the proposed design with those from a similar design based on a fully-evaluated model that directly models the maximum observed toxicity level within the patients' entire assessment window. We describe settings in which, under comparable power, the proposed design shortens the trial. The proposed design offers more benefit compared to the alternative design as patient accrual becomes slower.