5 resultados para phospholipase-D activity
em DigitalCommons@The Texas Medical Center
Resumo:
The mammalian target of rapamycin (MTOR) assembles into two distinct complexes: mTOR complex 1 (mTORC1) is predominantly cytoplasmic and highly responsive to rapamycin, whereas mTOR complex 2 (mTORC2) is both cytoplasmic and nuclear, and relatively resistant to rapamycin. mTORC1 and mTORC2 phosphorylatively regulate their respective downstream effectors p70S6K/4EBP1, and Akt. The resulting activated mTOR pathways stimulate protein synthesis, cellular proliferation, and cell survival. Moreover, phospholipase D (PLD) and its product, phosphatidic acid (PA) have been implicated as one of the upstream activators of mTOR signaling. In this study, we investigated the activation status as well as the subcellular distribution of mTOR, and its upstream regulators and downstream effectors in endometrial carcinomas (ECa) and non-neoplastic endometrial control tissue. Our data show that the mTORC2 activity is selectively elevated in endometrial cancers as evidenced by a predominant nuclear localization of the activated form of mTOR (p-mTOR at Ser2448) in malignant epithelium, accompanied by overexpression of nuclear p-Akt (Ser473), as well as overexpression of vascular endothelial growth factor (VEGF)-A isoform, the latter a resultant of target gene activation by mTORC2 signaling via hypoxia-inducible factor (HIF)-2alpha. In addition, expression of PLD1, one of the two major isoforms of PLD in human, is increased in tumor epithelium. In summary, we demonstrate that the PLD1/PA-mTORC2 signal pathway is overactivated in endometrial carcinomas. This suggests that the rapamycin-insensitive mTORC2 pathway plays a major role in endometrial tumorigenesis and that therapies designed to target the phospholipase D pathway and components of the mTORC2 pathway should be efficacious against ECa.
Resumo:
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were used to non-invasively determine if cirrhosis induced by carbon tetrachloride (CCl$\sb4$) and phospholipase-D (PLD) could be distinguished from fatty infiltration in rat. MRS localization and water suppression methods were developed, implemented and evaluated in terms of their application to in vivo proton NMR studies of experimental liver disease. MRS studies were also performed to quantitate fatty infiltration resulting from carbon tetrachloride (CCl$\sb4$) or alcohol (ethanol) administration and the MRS results were confirmed using biochemical total lipid analysis and histology. $\rm T\sb1$ weighted MR images acquired weekly, 48 hours post administration, demonstrated only a slight increase in overall liver intensity with CCl$\sb4$ or alcohol administration, which is consistent with previously reported results. The MR images were able to detect nodules resulting from CCl$\sb4$+PLD induced cirrhosis as hypointense regions, also consistent with previous reports. Localized in vivo water and lipid proton $\rm T\sb1$ relaxation time measurements were performed and demonstrated no statistically significant trends for either agent. In vivo proton spectra were also acquired using stimulated echo techniques to quantitatively follow the changes in liver lipid content. The changes in liver lipid content observed using MRS were verified by total lipid analysis using the Folch technique and histology. The in vivo $\rm T\sb1$ and lipid quantification data str inconsistent with the previous hypothesis that the changes in $\rm T\sb1$ weighted images were the result of increased "free" water content and, therefore, increased water $\rm T\sb1$ relaxation times. These data indicate that the long term changes are more likely the result of changes in lipid content. The data are also shown to agree with the accepted hypothesis that the time course and mechanism of fatty infiltration are different for CCl$\sb4$ and alcohol. The hypothesis that the lipids resulting from either protocol are from the same lipid fraction(s), presumably triglycerides, is also supported. And lastly, on the basis of MR images and quantitative MRS lipid information, it was shown that cirrhosis could be distinguished from fatty infiltration. ^
Resumo:
Programmed cell death is characterized by tightly controlled temporal and spatial intracellular Ca2+ responses that regulate the release of key proapoptotic proteins from mitochondria to the cytosol. Since apoptotic cells retain their ability to exclude membrane impermeable dyes, it is possible that the cells evoke repair mechanisms that, similar to those in normal cells, patch any damaged areas of the plasma membrane that preclude dye permeation. One critical distinction between plasma membrane repair in normal and apoptotic cells is the preservation of membrane lipid asymmetry. In normal cells, phosphatidylserine (PS) retains its normal asymmetric distribution in the inner membrane leaflet. In apoptotic cells, PS redistributes to the outer membrane leaflet by a Ca2+ dependent mechanism where it serves as a recognition ligand for phagocytes(1). In this study Ca 2+-specific fluorescent probes were employed to investigate the source of Ca2+ required for PS externalization. Experiments employing Rhod2-AM, calcium green 1, fura2-AM and the aqueous space marker FITC-dextran, demonstrated that exogenous Ca2+ imported with endocytotic vesicles into the cell was released into the cytosol in an apoptosis dependent manner. Labeling of the luminal side of the endocytotic vesicles with FITC-annexin 5, revealed that membrane lipid asymmetry was disrupted upon endosome formation. Specific labeling of the lysosomal luminal surface with the non-exchangeable membrane lipid probe, N-rhodamine-labeled-phosphatidylethanolamine (N-Rho-PE) and the lysosomal specific probe, lysotracker green, facilitated real-time monitoring of plasma membrane-to-endosome-to-lysosome transitions. Enforced elevation of cytosolic [Ca2+] with ionophore resulted in the redistribution of N-Rho-PE and PS from the inner membrane leaflet to the PM outer membrane leaflet. Identical results were obtained during apoptosis, however, the redistribution of both N-RhoPE and PS was dependent on the release of intra-lysosomal Ca2+ to the cytosol. Additional experiments suggested that lipid redistribution was dependent on the activity of lysosomal phospholipase A2 activity since lipid trafficking was abolished in the presence of chloroquine and lipase inhibitors. These data indicate that endosomal/lysosomal Ca2+ and the fusion of hybrid organelles to the plasma membrane regulates the externalization of PS during apoptosis. ^
Resumo:
Accurate calculation of absorbed dose to target tumors and normal tissues in the body is an important requirement for establishing fundamental dose-response relationships for radioimmunotherapy. Two major obstacles have been the difficulty in obtaining an accurate patient-specific 3-D activity map in-vivo and calculating the resulting absorbed dose. This study investigated a methodology for 3-D internal dosimetry, which integrates the 3-D biodistribution of the radionuclide acquired from SPECT with a dose-point kernel convolution technique to provide the 3-D distribution of absorbed dose. Accurate SPECT images were reconstructed with appropriate methods for noise filtering, attenuation correction, and Compton scatter correction. The SPECT images were converted into activity maps using a calibration phantom. The activity map was convolved with an $\sp{131}$I dose-point kernel using a 3-D fast Fourier transform to yield a 3-D distribution of absorbed dose. The 3-D absorbed dose map was then processed to provide the absorbed dose distribution in regions of interest. This methodology can provide heterogeneous distributions of absorbed dose in volumes of any size and shape with nonuniform distributions of activity. Comparison of the activities quantitated by our SPECT methodology to true activities in an Alderson abdominal phantom (with spleen, liver, and spherical tumor) yielded errors of $-$16.3% to 4.4%. Volume quantitation errors ranged from $-$4.0 to 5.9% for volumes greater than 88 ml. The percentage differences of the average absorbed dose rates calculated by this methodology and the MIRD S-values were 9.1% for liver, 13.7% for spleen, and 0.9% for the tumor. Good agreement (percent differences were less than 8%) was found between the absorbed dose due to penetrating radiation calculated from this methodology and TLD measurement. More accurate estimates of the 3-D distribution of absorbed dose can be used as a guide in specifying the minimum activity to be administered to patients to deliver a prescribed absorbed dose to tumor without exceeding the toxicity limits of normal tissues. ^
Resumo:
Experience with anidulafungin against Candida krusei is limited. Immunosuppressed mice were injected with 1.3 x 10(7) to 1.5 x 10(7) CFU of C. krusei. Animals were treated with saline, 40 mg/kg fluconazole, 1 mg/kg amphotericin B, or 10 and 20 mg/kg anidulafungin for 5 days. Anidulafungin improved survival and significantly reduced the number of CFU/g in kidneys and serum beta-glucan levels.